In order to investigate the restoration of low resolution images, the linear and nonlinear interpolation methods were applied for the interpolation of the com- mon information matrix obtained from a series of pictures, getting the restructuring matrix. The characteristic block with the best restoration effect was determined by analyzing the pixel difference of the common information of each image at the same position. Then the characteristic blocks and their original blocks were used to build and train neural network. Finally, images were restored by the neural network and the differences between pictures were reduced. Experimental results showed that this method could significantly improve the efficiency and precision of algorithm.