Chaos synchronization of coupled nonlinear systems is ubiquitous in nature and science. Dynamic behaviors of coupled ring and linear arrays of unidirectionally coupled Lorenz oscillators are studied numerically. We find that chaos synchronization in circular arrays of chaotic systems can occur through the on off intermittent synchronization with a power law distribution of laminar phases. And in the coupled ring and linear array it is found that the chaotic rotating waves generated from the ring propagate with spatial periodic synchronization along the linear array.