Partially hydrolyzed polyacrylamide (HPAM) has been widely used for water shut-off and profile control to enhance oil recovery. Herein, we reported a novel technique by which the crosslinking between HPAM and Cr3+ in aqueous solutions at 60 ℃ can be delayed effectively. Citric acid was selected as an organic complexing agent of Cr3+ so that the crosslinking between HPAM and Cr3+ can be prevented completely. Due to the decomposi- tion of the bicarbonate (HCO3-) embedded in solution, CO2 released from solution and the pH value of solution increased gradually. The degree of ionization of HPAM and its ability to complex with Cr3+ increased accordingly. When the complexation of Cr3+ with HPAM is stronger than that with citric acid, the viscosity of the HPAM solution increased signif- icantly. Under the closed condition, together with the existence of potassium dihydrogen phosphate (KH2PO4), the release of CO2 was very slow and the condition was highly con- trolled so that the ionization of HPAM was prevented initially. Furthermore, the hydrogen bonding interactions between HPAM and melamine embedded in solution previously also postponed the ionization of HPAM. As a result, the crosslinking between HPAM and Cr3+ can be delayed for almost one month, completely meeting the requirements for deep water shut-off and profile control to enhance oil recovery.