Activated carbon fibers (ACFS) with surface area of 1388 m2/g prepared from paper by chemical activation with KOH has been utilized as the adsorbent for the removal of methylene blue from aqueous solution. The experimental data were analyzed by Langmuir and Freundlich models of adsorption. The effects of pH value on the adsorption capacity of ACFS were also investigated. The rates of adsorption were found to conform to the kinetic model of Pseudo-second-order equation with high values of the correlation coefficients (R〉0.998). The Langmuir isotherm was found to fit the experimental data better than the Feundlich isotherm over the whole concentration range. Maximum adsorption capacity of 520 mg/g at equilibrium was achieved. It was found that pH played a major role in the adsorption process, higher pH value favored the adsorption of MB.
A simple and green technique has been developed to prepare hierarchical biomorphic ZrO2- CeO2, using silkworm silk as the template. Different from traditional immersion technics, the whole synthesis process depends more on the restriction or direction functions of the silkworm silk template. The analytic results showed that ZrO2-CeO2 exhibited a well-crystallized hierarchically interwoven hollow fiber structure with 16-28 μm in diameter. The grain size of the sample calcined at 800 ℃ was about 14 nm. Consequently, the interwoven meshwork at three dimensions is formed due to the direction of biotemplate. The action mechanism is summarily discussed here. It may bring the biomorphic ZrO2-CeO2 nanomaterials with hierarchical interwoven structures to more applications, such as catalysts.