数据挖掘中如何根据数据之间的相似度确定簇(Cluster)数一直是聚类算法中需要解决的难题。文中在经典谱聚(Spectral Clustering)算法的基础上提出了一种基于特征间隙检测簇数的谱聚类算法(Spectral Clustering with Identifying Clustering Number based on Eigengap,SC-ICNE)。通过构建规范的拉普拉斯矩阵,顺序求解其特征值和相应特征向量,并得到矩阵相邻特征值的间隙,通过判断特征间隙的位置来确定簇数k。最后,通过对前k个特征向量的k-means算法实现数据集的聚类。文中通过仿真分析了高斯相似度函数对SC-ICNE聚类性能的影响,在非凸球形数据集和UCI数据集上进行了性能仿真,并和k-means聚类算法进行了对比,在检测簇数和聚类准确性方面,验证了SC-ICNE算法的有效性。
本文提出了一种基于数据驱动字典和过完备稀疏表示的自适应语音增强方法。首先在训练阶段采用干净语音基于K奇异值分解(K—singular value decomposition,K-SVD)算法训练过完备字典,然后在测试阶段根据含噪语音的噪声方差自适应选择最优的阈值,采用正交匹配追踪算法对含噪语音信号在过完备字典上进行稀疏分解,最后利用系数稀疏表示重构语音信号,从而达到语音增强的目。该方法不像传统语音增强方法那样减少或消去噪声,而是从字典中选取适当的原子表示纯净信号,从而把纯净信号从含噪信号中分离出来。对白噪声和有色噪声环境下重构语音进行了主客观评价。仿真结果显示:该方法能有效去除加性噪声,并且改善了语音质量。
资源受限的传感器节点密集分布在无线传感器网络监控区域,sink节点通过收集节点间观测信息对监控区域内发生的事件进行感知.本文提出SCMAR(Spatial Correlation-based Mobile Agent Routing)路由算法,在移动代理架构内,利用节点观测数据的空间相关性以能量有效的方式对感知事件进行估计.仿真结果表明SCMAR在各种应用环境下能量有效性均优于MARDF(Mobile Agent Routes for Data Fusion)路由算法.