The reorientation of microtubules (MTS) in roots of Oryza sativa L. treated with 2,4_D was studied using confocal laser scanning microscopy. In the control (the roots were not treated with 2,4_D), different distribution patterns of MTS were observed in the different growth zones of root tips. MTS of the cortical cells were randomly aligned in the zone of cell division. They were transversely arranged in the cortical cells of the zone of cell elongation; and obliquely oriented in the root hair zone. After treatment with 2,4_D, MTS displayed distinct changes with reorientation in the cortex of the root tip coupling with the inhibition of root growth. MTS changed their orientation in the cortical cells of the zone of cell division from being randomly oriented to transversely oriented when incubated in 1 mg/L 2,4_D for 1 h. However, they were recovered and became randomly oriented when the roots were treated with 1 mg/L 2,4_D for 24 h. An array of MTS, which was different from that in the control, was observed in the cortical cells of the zone of cell elongation in the roots treated with 1 mg/L 2,4_D for 1 h. After treatment with 10 mg/L 2,4_D for 1 h, the MTS in the cortical cells of the zone of cell division became transversely reorientated, but the pattern of MTS distribution was different from that in the 1_hour treatment of 1 mg/L 2,4_D. MTS were hardly detected in the same type of cells when roots were submerged in 10 mg/L 2,4_D for 24 h. When roots were incubated in 10 mg/L 2,4_D for 1 h, the MTS of the cortical cells in the zone of cell elongation became randomly oriented, and much more randomly when the roots were treated for 24 h.
A series of new cognitions on the morphogenesis of maize ( Zea mays L.) embryo have been obtained with scanning electron microscopy and semi-thin section techniques. 1. The proembryo. The proembryo from zygotic cell divisions may be divided into three parts: proper, hypoblast and suspensor. The suspensor is short and small, and only exists transiently. As to the hypoblast there is a growth belt, which promotes elongation of the hypoblast. Eventually the upper portion of the hypoblast contributes to the formation of the coleorhiza and the remainder dries up, sticking to the end of the coleorhiza. 2. The maize embryo possesses dorsiventrality and cotyledon dimorphism. During early proembryo stage, the dorsiventrality appears in the proper of the embryo. On the ventral side, the cells are small with dense cytoplasm and few vacuoles. On the dorsal side, the cells are larger with lower cytoplasmic density and have more vacuoles. During later proembryo stage, the proper develops into two parts: the ventrum and the dorsurn. The ventrum rises up from the center of the ventral side. The dorsurn is composed of the marginal area of the ventral side and the whole dorsal side of the proper. During young embryo development, the ventrum differentiates into the coleoptile, apical meristem, hypocotyl, radicle and the main part of the coleorhiza. What is more important, the emergence of coleoptile primordium and radicular initials occur at the axis of the proper, then the coleoptile primordium expands from its two ends toward left and right to form a ring, and the endogenous radicular initials expand in all directions to form a conical radicular tip. All these morphogenetic activities of the ventrum follow a bilateral symmetrical pattern. The dorsurn forms the scutellum. primordium. Then the scutellum primordium, expands rapidly toward the left, right, front and back, while thickening itself, so as to make all components originating from the ventrum become hidden in the longitudinal groove of the scutellum. Lastly, the left and ri
Changes in the pattern of microtubule distribution and organization during megagametogenesis in the embryo sac of rice (Oryza sativa L. cv. IR36) were re-examined using a modified polyethylene glycol sectioning technique before immuno-fluorescence staining of microtubules. In the sectioned materials the pattern of distribution and structural organization of the microtubule cytoskeleton were quite well preserved. Fine details of the patterns of structural changes and re-organization of the microtubule cytoskeleton in the major stages of development during embryo sac megagametogenesis (viz. functional megaspore, uni-nucleate, 2-nucleate, 4-nucleate, 8-nucleate and mature stage) could be clearly observed and easily followed. Some new organizational patterns of microtubules associated with the probable movement and positioning of the polar nuclei were observed.