高层次人才科研启动基金(HJ0038) 作品数:2 被引量:15 H指数:1 相关作者: 林宇 谭斌 魏宇 黄登仕 更多>> 相关机构: 成都理工大学 西华师范大学 西南交通大学 更多>> 发文基金: 教育部人文社会科学研究基金 教育部“新世纪优秀人才支持计划” 高层次人才科研启动基金 更多>> 相关领域: 经济管理 更多>>
基于双曲线记忆HYGARCH模型的动态风险VaR测度能力研究 被引量:15 2011年 本文针对金融市场的典型事实特征,运用自回归分数移动平均(Fractional Integrated Autoregressive Moving Average,ARFIMA)模型与双曲线记忆广义自回归条件异方差模型(Hyperbolic Memory Generalized Autoregressive Conditional Heteroscedasticity,HYGARCH)模型、分数协整非对称自回归条件异方差(Fractional Integrated Asymmetric Power Autoregressive Conditional Heteroscedasticity,FIAPARCH)模型和分数协整指数广义自回归条件异方差(Fractional Integrated Exponential Generalized Autoregressive Conditional Heteroscedasticity,FIEGARCH)模型结合,并运用有偏学生t分布(Skew Student t Distribution,SKST)来捕获金融收益分布形态,以此开展动态风险测度研究,进而运用返回测试(Back-Testing)中的似然比率测试(Likelihood Ratio Test,LRT)和动态分位数回归(Dynamic Quantile Regression,DQR)方法对风险模型的准确性与精度进行联合检验。通过实证研究,得到了一些非常有价值的实证结论:ARFIMA(1,d,1)-FIAPARCH(1,d,1)-SKST模型与ARFIMA(1,d,1)-HYGARCH(1,d,1)-SKST模型均表现出卓越的风险测度能力,但没有绝对优劣之分;ARFIMA(1,d,1)-FIEGARCH(1,d,1)-SKST模型在成熟市场的表现能力差强人意;本文引入的所有风险模型在中国大陆沪、深股市表现优越且没有实质性差异。 林宇关键词:金融市场 基于非参数与L-Moment估计的股市动态极值ES风险测度研究 2011年 通过运用带宽非参数方法、AR-GARCH模型对时间序列的条件均值、条件波动性进行建模估计出标准残差序列,再运用L-Moment与MLE(maximum Likelihood estimation)估计标准残差的尾部的GPD参数,进而运用实验方法测度出风险VaR(value at Risk)及ES(ExpectedShortfall),最后运用Back-Testing方法检验测度准确性。结果表明,基于带宽的非参数估计模型比GARCH簇模型在测度ES上具有更高的可靠性;基于非参数模型与L-Moment的风险测度模型能够有效测度沪深股市的动态VaR与ES。 林宇 谭斌 黄登仕 魏宇关键词:非参数估计 EVT