The original additivity rule method cannot give good results for electron scattering from SO,SO2,SO2Cl2,SO2ClF,and SO2F2 molecules at low energy,because the electron-molecule scattering is simply reduced to electron-atom scattering.Considering the difference between the bound atom in a molecule and the corresponding free atom,the original additivity rule is revised.With the revised additivity rule,the total cross sections for electron scattering from these molecules are calculated over a wide energy range below 3000 eV and compared with the available experimental and theoretical data.A better agreement between them is obtained.
The ionisation of Rydberg helium atoms in an electric field above the classical ionisation threshold has been examined using the semiclassical method, with particular emphasis on discussing the influence of the core scattering on the escape dynamics of electrons. The results show that the Rydberg helium atoms ionise by emitting a train of electron pulses. Unlike the case of the ionisation of Rydberg hydrogen atom in parallel electric and magnetic fields, where the pulses of the electron are caused by the external magnetic field, the pulse trains for Rydberg helium atoms are created through core scattering. Each peak in the ionisation rate corresponds to the contribution of one core-scattered combination trajectory. This fact further illustrates that the ionic core scattering leads to the chaotic property of the Rydberg helium atom in external fields. Our studies provide a simple explanation for the escape dynamics in the ionisation of nonhydrogenic atoms in external fields.
The additivity rule for electron-molecule scattering is revised by considering the difference between the free atom and the bound atom in the molecule. The total cross sections for electron scattering from fluoromethanes (CF4, CF3H, CF2H2, and CFH3) are calculated in an energy range from 100 eV to 1500 eV by the revised additivity rule. The present calculations are compared with the original additivity rule results and the available experimental data. Better agreement with each other is obtained.
The photodetachment of a hydrogen negative ion inside a circular microcavity is studied based on the semiclassical closed orbit theory. The closed orbit of the photo-detached electron in a circular microcavity is investigated and the photodetachment cross section of this system is calculated. The calculation result suggests that oscillating structure appears in the photodetachment cross section, which is caused by the interference effects of the returning electron waves with the outgoing waves traveling along the closed orbits. Besides, our study suggests that the photodetachment cross section of the negative ions depends on the laser polarization sensitively. In order to show the correspondence between the cross section and the closed orbits of the detached electron clearly, we calculate the Fourier transformation of the cross section and find that each peak corresponds to the length of one closed orbit. We hope that our results will be useful for understanding the photodetachment process of negative ions or the electron transport in a microcavity.