The characteristics of effluent organic matter(EfOM) from a wastewater treatment plant(WWTP) during ozonation were investigated using excitation and emission matrix(EEM)spectra, Fourier transform infrared spectroscopy(FT-IR) and high-performance size exclusion chromatography(HPSEC) at different ozone dosages. The selectivity of ozonation towards different constituents and functional groups was analysed using two-dimensional correlation spectra(2D-COS) probed by FT-IR, synchronous fluorescence spectra and HPSEC.The results indicated that ozonation can destroy aromatic structures of EfOM and change its molecular weight distribution(MWD). According to 2D-COS analysis, microbial humiclike substances were preferentially removed, and then the protein-like fractions. Terrestrial humic-like components exhibited inactivity towards ozonation compared with the above two fractions. Protein-like substances with small molecular weight were preferentially reacted during ozonation based on 2D-COS probed by HPSEC. In addition, the selectivity of ozone towards different functional groups of EfOM exhibited the following sequence:phenolic and alcoholic C\O groups > aromatic structures containing C_C double bonds >aliphatic C\H. X-ray photoelectron spectroscopy(XPS) further elucidated the preferential reaction of aromatic structures in EfOM during ozonation.
通过微观分析系统对气浮工艺中的气载絮体进行观测,分别研究了气浮过程中微气泡和气载絮体的特性以及Zeta电位对气载絮体平衡接触角的影响。在0.40 MPa和30%回流比的工况条件下,气泡平均粒径较小,其尺寸主要分布在40~110μm之间,占整体数量90%以上。投加混凝剂聚合氯化铝(PAC)后,在0.40 MPa时气载絮体尺寸最大,主要尺寸分布在0.45~0.95mm之间,二维分形维数最小,结构更为松散轻薄。在此基础上通过投加不同浓度的混凝剂控制溶液的Zeta电位来探究其对平衡接触角的影响,发现不同于传统混凝在等电点处达到最优混凝效果,气浮工艺是在Zeta电位为17 m V时平衡接触角达到最大值,此时的气载絮体中气泡与絮体的结合更为理想,更利于提升气浮工艺的分离效果。