The photolysis results of new diferrocenyl substituted cyclopentadienone(3) show that sunlight and air play an important role in the decomposition of compound 3, and two new compounds, 2-cyclopentenone(4) and a-pyrone(5), were obtained via photolysis of compound 3. The photolysis process was investigated by IH NMR, and a plausible mechanism for the formation of compound 5 was deduced. The cycloaddition reactions of substituted cyclopentadienones(3, 7, 9) with maleimide gave substituted imides 8, 10, 11, 12 and an unprecedented diferrocenyl substituted 1H-pyrrol-3(2H)-one derivative 13, respectively. The structures of compounds 4, 5, 8, 10, 11, 12 and 13 were confirmed by X-ray single crystal diffraction analysis technique.
The reactivity of carbonyl iron cluster with alkynes has been studied by the thermal reaction of Fe_3(CO)_(12) with R-C≡C-R'(R = Fc(Ferrocenyl); R′ = Ph(Phenyl), Fc, H). The hexacarbonyldiiron cluster with ferracyclopentadiene ring(μ_2, η~4-C_4Ph_4)Fe_2(CO)_6(1) and one tetraphenyl substituted cyclopentadienone(Ph_4C_4CO)(2) were simultaneously obtained by the reaction of Fe_3(CO)_(12) with alkyne(Ph-C≡C-Ph). Only one ferrole cluster(μ_2, η~4-C_4Fc_2H_2)Fe_2(CO)_6(3) was separated by using Fc-C≡C-H as alkyne. One tri-carbonyl iron complex(η~4-C_4Fc_4CO)Fe(CO)_3(4) and an unexpected new cyclic ketone compound 2,2,4,5-tetraferrocenylcyclopenta-4-en-1,3-di-one [Fc_4C_3(CO)_2](5) were obtained by using Fc-C≡C-Fc as alkyne. A new complex(η4-2,4-diphenyl-3,5-diferrocenylcyclopenta-2,4-dien-1-one)-tricarbonyl iron(η~4-C_4Ph_2Fc_2CO)Fe(CO)_3(6) was synthesized by the reaction of Fe_3(CO)_(12) with Fc-C≡C-Ph. The structures of compounds 1~6 were determined by X-ray single-crystal diffraction and spectroscopic characterization. The crystal structures of two new compounds 5 and 6 were analyzed. Our experimental results reveal the structural models of the reaction products are affected by the kinds of substituents from alkynes R-C≡C-R′.
The conjugate addition reactions of four organolithium reagents to 2,3,4,5-tetraphenylcyclopentadienone (tetracyclone) were investigated to reveal the reactivity of organolithium reagents to tetracyclone. The results show that 1,2-addition products 2,3,4,5-tetraphenyl-1-(2-thienyl)-2,4-cyclopentadien-l-ol(1), 1-n-butyl-2,3,4,5-tetraphenyl- 2,4-cyclopentadien-l-ol(2) and 1,2,3,4,5-pentaphenyl-2,4-cyclopentadien-1-ol(3) were synthesized in excellent yields while tetracyclone reacted with 2-thienyllithium, n-butyllithium and phenyllithium, respectively. Interestingly, three 1,2-, 1,4- and 1,6-addition isomers 1-tert-butyl-2,3,4,5-tetraphenyl-2,4-cyclopentadien-1-ol(4), 4-tert-butyl-2,3,4,5- tetraphenyl-2-cyclopenten-1-one(5) and 2-tert-butyl-2,3,4,5-tetraphenyl-3-cyclopenten-1-one(6), were simultaneously obtained by the conjugate addition reaction of tert-butyllithium with larger steric hindrance to tetracyclone. Compounds 1-6 were characterized by ^1H and ^13C NMR spectra, Fourier transform infrared(FTIR) spectra and mass spectra(MS). The crystal and molecular structures of compounds 1, 2 and isomers 5, 6 were determined by X-ray single crystal diffraction technique. The results imply that the steric hindrance of tert-butyllithium probably play a key role in controlling the conjugate addition reaction. The conjugate addition mechanism of organolithium reagents to tetracyclone was proposed.
A three-dimensional coordination polymer {[Dy(H2btec)2/4(btec)3/6(H2O)]·2H2O} n has been synthesized through the reaction of DyCl3·6H2O and 1,2,4,5-benzenetetracarboxylic acid by solvothermal technique, and the crystal structure was determined by X-ray diffraction. The Dy(Ⅲ) coordination polymer crystallizes in monoclinic, space group P21/n with a=10.7063(1), b=7.1491(1), c=17.1197(3), α=90, β=97.10, γ=90°, V=1300.31(3)3 , C10H9DyO11 , Dc=2.389g/cm3 , Z=4, F(000)=892, the final R=0.0165 and wR=0.0448 for I 〉 2σ(I). The title coordination polymer possesses a three-dimensional framework consisting of nine-coordinate Dy(Ⅲ) centers and two kinds of coordination modes for the 1,2,4,5-benzenetetracarboxylic acid ligands. Every btec4- ligand (deprotonated four protons from 1,2,4,5-benzenetetracarboxylic acid) in the title coordination polymer can clamp three Dy atoms like forceps, which could make the Dy atoms closer in the area of metal-metal interaction. The 3-D framework of the coordination polymer has many channels occupied by the free guest water molecules, and the hydrogen bonds between the coordinated carboxylic groups and guest water molecules could stabilize the crystal structure of the title coordination polymer. In addition, the luminescence properties were also studied.