本文提出了一种新的数据挖掘分类方法——免疫克隆分类算法(Immune Clonal Algorithm for Classification,ICAC).ICAC是一种基于免疫克隆算法的搜索机制和Michigan方法模型的规则提取和分类方法.与遗传分类算法不同,ICAC是一种自下而上的分类算法.ICAC虽然着眼于规则的进化,但是从编码到免疫算子的设计都立足于训练样本,可避免进化过程中产生无意义规则,且产生的规则是可解释的.文中将算法用于UCI数据集,并与现有的基于非遗传算法、遗传算法和分布式遗传算法的分类方法进行了比较实验.结果表明,ICAC是一种有效的分类算法.