A novel cooling system combining ultra fast cooling rigs with laminar cooling devices was investigated.Based on the different cooling mechanisms,a serial of mathematic models were established to describe the relationship between water flow and spraying pressure and the relationship between water spraying heat flux and layout of nozzles installed on the top and bottom cooling headers.Model parameters were validated by measured data.Heat transfer models including air convection model,heat radiation model and water cooling capacity model were detailedly introduced.In addition,effects on cooling capacity by water temperature and different valve patterns were also presented.Finally,the comparison results from UFC used or not have been provided with respect to temperature evolution and mechanical properties of Q235B steel grade with thickness of 7.8 mm.Since online application of the sophisticated CTC process control system based on these models,run-out table cooling control system has been running stably and reliably to produce resource-saving,low-cost steels with smaller grain size.
A recently developed advanced hot-formed (AHF) steel for automobile is introduced and three physical metallurgy concepts based on which the AHF steel was designed are reviewed, they are dynamic carbon partitioning (DCP), flash copper precipitation and bake toughening. AHF steel is an upgrade of the existing hot-formed steel especially suitable for making components with superior crashworthiness; it can be processed by regular hot stamping equipment and process. A kinetics model for DCP is expressed in detail, which can be used to calculate the volume fraction of retained austenite based on four materials and processing parameters. The flash copper precipitation used as an additional strengthening mechanism for AHF steel is also discussed and its ultrafast kinetics can be attributed to the enhancement of quenched-in vacancies on copper diffusion. Also, the bake toughening of AHF steel is addressed; the mechanism of which may be related to the elimination of the less stable block-like retained austenite.