您的位置: 专家智库 > >

国家自然科学基金(51308407)

作品数:7 被引量:52H指数:2
相关作者:蒋正武陈庆王慧李文婷周磊更多>>
相关机构:同济大学井冈山大学更多>>
发文基金:国家自然科学基金国家重点基础研究发展计划中央高校基本科研业务费专项资金更多>>
相关领域:建筑科学更多>>

文献类型

  • 7篇中文期刊文章

领域

  • 7篇建筑科学

主题

  • 2篇混凝土
  • 1篇低水胶比
  • 1篇电沉积
  • 1篇冻融
  • 1篇冻融循环
  • 1篇氧化钙
  • 1篇遗传算法
  • 1篇英文
  • 1篇砂浆
  • 1篇神经网
  • 1篇神经网络
  • 1篇水化
  • 1篇水化产物
  • 1篇水灰比
  • 1篇水胶
  • 1篇水胶比
  • 1篇水泥
  • 1篇水泥基
  • 1篇水泥基复合材...
  • 1篇体积

机构

  • 5篇同济大学
  • 1篇井冈山大学

作者

  • 4篇蒋正武
  • 2篇陈庆
  • 1篇郭秀艳
  • 1篇朱合华
  • 1篇邓子龙
  • 1篇王慧
  • 1篇周跃亭
  • 1篇周磊
  • 1篇曾志勇
  • 1篇马国金
  • 1篇李文婷

传媒

  • 1篇硅酸盐通报
  • 1篇硅酸盐学报
  • 1篇同济大学学报...
  • 1篇建筑材料学报
  • 1篇Journa...
  • 1篇Journa...
  • 1篇中国科学:技...

年份

  • 1篇2021
  • 1篇2020
  • 1篇2019
  • 3篇2014
  • 1篇2013
7 条 记 录,以下是 1-7
排序方式:
基于GA-BP神经网络的UHPC抗压强度预测与配合比设计被引量:41
2020年
开展了不同配合比条件下超高性能混凝土(UHPC)的制备与抗压强度试验,并结合已有数据形成了神经网络训练样本;根据UHPC原材料组成和性能需求设计了包含神经网络输入层(7节点)、隐层(8节点)和输出层(1节点)的拓扑结构,并引入遗传算法(GA)优化了UHPC抗压强度预测网络的初始权值和阈值;采用试验样本模拟训练了不同配合比条件下的UHPC抗压强度预测GA-BP神经网络,并以此为基础建立了基于不同性能需求的配合比设计方法.对比试验数据和传统BP神经网络方法计算结果发现,GA-BP神经网络能更好地指导UHPC抗压强度预测和配合比设计.
陈庆马瑞蒋正武蒋正武
关键词:超高性能混凝土GA-BP神经网络遗传算法配合比设计
Experimental investigation of the factors affecting accuracy and resolution of the pore structure of cement-based materials by thermoporometry
2013年
Thermoporometry(TPM) is a calorimetric-based technique for characterizing pore structure according to the freezing and melting point depression of liquid confined in pores which attributes to a varying phase-transition free energy by interface curvature.TPM has demonstrated an emerging success in applications for determining the mesopores of cement-based materials in recent decades.To improve its resolution and accuracy,this paper discussed these factors which show a great influence on the baseline heat flow and the derived pore structure using two molecular sieves with discontinuous size for calibration,referring to the sample handling,the mass of sample and the varying temperature.The pore size distributions of ordinary and high-strength concrete by TPM were favorably compared to the results taken by nitrogen adsorption/desorption(NAD) and mercury intrusion porosimetry(MIP).The results illustrated that both the accuracy and resolution improve with the decreasing cooling/heating rate until 1 °C/min;however,if the rate is too slow,it can lead to an unstable result.The mass of the sample tested has much less an effect on the accuracy when it increases to more than 30 mg.TPM is demonstrated to be more accurate to characterize the mesopores with the size bigger than 4 nm as compared to NAD and MIP.
Zheng-wu JIANGWen-ting LIZi-long DENGZhi-guo YAN
关键词:PORECEMENT-BASEDACCURACY
电沉积修复裂缝中离子迁移的Debye层效应
2021年
电场作用下电解质离子在裂缝中的迁移规律直接关系到混凝土裂缝电沉积修复的效果.经典的PoissonNernst-Planck(PNP)方程假定电解质离子为理想的质点模型,忽略了离子和裂缝的尺寸效应,难以揭示电解质离子在极端受限条件下纳米裂缝中的迁移规律.本文以双电层厚度为物理基础,建立了电沉积修复中离子迁移的几何模型,采用无量纲Debye数来描述离子浓度和裂缝尺寸等对离子迁移规律的影响;从自由能出发,考虑了离子和裂缝的尺寸效应,推导了修正的PNP方程,并通过有限元仿真获得了修正PNP方程的数值解.结果表明,当Debye数较小时,离子的迁移可以由经典的PNP方程来描述,离子浓度满足电中性关系,电势呈现出线性分布;随着Debye数的进一步增加,经典PNP方程的数值解会出现超高非物理离子浓度O(10^(2)),而基于修正后的PNP方程,可以获得裂缝中更为合理的阳离子饱和浓度值O(10).本研究将为电沉积修复过程的离子迁移分析以及可修复最小裂缝尺寸评定提供理论指导.
刘伟周跃亭陈庆朱合华
关键词:电沉积钢筋混凝土裂缝
掺硅灰的低水胶比水泥水化产物定量预测方法被引量:2
2019年
基于低水胶比下水泥水化原理以及硅灰作用机制,考虑体系中氢氧化钙量的变化,修正中心粒子模型,提出掺硅灰的低水胶比水泥水化产物体积分数预测方法.对比提出方法、试验数据、Power模型以及Jensen模型,结果表明:所提方法可较好地描述掺硅灰的低水胶比水泥水化进程并定量预测不同水化产物的体积含量;当无硅灰时,所提方法计算的未水化水泥和化学收缩的体积与Power模型计算结果基本一致;当含有硅灰时,所提方法计算的水化产物的体积分数与Jensen模型的模拟相近.
陈庆王慧蒋正武曾志勇
关键词:氢氧化钙水化产物体积分数
国内外水泥基复合材料多尺度模型研究进展被引量:1
2014年
多尺度方法作为组合不同模型的耦合方法,在水泥基复合材料的跨尺度问题上起着重要作用。某一尺度的模型在一定程度上赋予了材料不同的意义。纳米凝胶模型的提出很好的解释了非均质水泥基材料C-S-H凝胶的形成及材料密度、比表面积等测试数值的差异;微观模型对预测C-S-H凝胶产物物相成分的变化规律有重要帮助,对水化机理的研究具有重要意义;宏观模型则能很好的反映水泥基材料力学性能和使用寿命,尤其在氯离子侵蚀和碳化方面表现卓著。虽然每一尺度的模型都有其独特之处,但缺少模型间的相互嵌入,无法建立微观模型与宏观性能之间的联系。本文综述了近年来国内外水泥基材料不同尺度模型的研究进展,分析了单个模型的结构特征,提出了多尺度模型的构建和目前存在的问题,并对多尺度模拟和预测的发展方向进行了展望。
郭秀艳蒋正武马国金
关键词:水泥基复合材料
超低温冻融循环对砂浆性能的影响(英文)被引量:6
2014年
水泥基材料超低温下的性能与其常温及低温下有很大差异。测量了不同砂浆的抗压抗折强度、相对动弹模量、相对质量损失率和含水率,研究了水融过程中吸水量、水灰比和最初含水率对砂浆抗超低温(-110℃)冻融性能的影响。结果表明:砂浆试样超低温冻融破坏比普通冻融破坏更加严重、迅速,且砂浆试样的抗折强度对超低温冻融更加敏感。试样在超低温冻融过程中逐渐从外界吸水,经过21次超低温冻融循环后,其吸水量甚至大于在真空饱水机中的吸水量。
蒋正武邓子龙李文婷周磊
关键词:冻融循环超低温砂浆水灰比含水率
Self-healing of Cracks in Concrete with Various Crystalline Mineral Additives in Underground Environment被引量:2
2014年
Cracks can deteriorate mechanical properties and/or durability of concrete. A few studies have shown that, cracks can autogenously heal under a certain conditions besides the traditional passive repair with a deliberate external intervention. For underground concrete structures, the presence of water, as a necessity for chemical reactions of the healing additives, is beneficial to healing concrete. In this paper, a natural healing method by mineral additives was developed according to the chemical and physical characteristics of underground environment. The healing capacity of three different crystalline mineral materials classified namely, carbonate, calcium sulphoaluminate expansive agent and natural metakaolin due to permeation- crystallization, expansion and pozzolanic reaction, has been assessed from the mechanical properties, referring to the relative elastic modulus, the strength restoration, and the water permeability of the healed specimens. In addition, the morphology of the healing products in the vicinity of the crack was observed. The results indicate that the specimens incorporated with the three mineral additives show different healing capacity according to the improved mechanical properties and permeability. The permeability of the host matrix decreased a lot after crack healing by natural metakaolin followed by carbonate whereas no noticeable improvement of water permeability has been observed for the specimens mixed with expansive agent. The specimens incorporated with carbonate show the best mechanical restoration in terms of relative elastic modulus and compressive strength. Although the dominate element is CaCO3 by reaction of CO32-, either from the dissolved CO2 or from the additives, and Ca2+ in the cementitious system to fill the cracks, the healing capacity depends greatly on the morphology and the properties of the newly formed products.
蒋正武李文婷YUAN ZhengzhengYANG Zhenghong
关键词:SELF-HEALINGMINERALUNDERGROUNDCONCRETE
共1页<1>
聚类工具0