您的位置: 专家智库 > >

国家自然科学基金(11171229)

作品数:7 被引量:5H指数:1
相关作者:蔡晓静牛冬娟酒全森更多>>
相关机构:首都师范大学北京工商大学北京工业大学更多>>
发文基金:国家自然科学基金国家重点基础研究发展计划北京市教委资助项目更多>>
相关领域:理学天文地球更多>>

文献类型

  • 7篇中文期刊文章

领域

  • 7篇理学
  • 1篇天文地球

主题

  • 2篇STABIL...
  • 2篇GLOBAL
  • 1篇粘性
  • 1篇边界层
  • 1篇边界层问题
  • 1篇NAVIER
  • 1篇NAVIER...
  • 1篇PLANAR
  • 1篇RA
  • 1篇SOME
  • 1篇SPACES
  • 1篇UNIQUE...
  • 1篇BLOW_U...
  • 1篇CLASSI...
  • 1篇CRITER...
  • 1篇CRITIC...
  • 1篇DISSIP...
  • 1篇GENERA...
  • 1篇HOLDER
  • 1篇INVISC...

机构

  • 1篇北京工商大学
  • 1篇北京工业大学
  • 1篇首都师范大学

作者

  • 1篇酒全森
  • 1篇牛冬娟
  • 1篇蔡晓静

传媒

  • 2篇Acta M...
  • 2篇Acta M...
  • 1篇数学学报(中...
  • 1篇Journa...
  • 1篇Acta M...

年份

  • 1篇2016
  • 1篇2014
  • 2篇2013
  • 3篇2012
7 条 记 录,以下是 1-7
排序方式:
GLOBAL REGULARITY FOR MODIFIED CRITICAL DISSIPATIVE QUASI-GEOSTROPHIC EQUATIONS
2014年
We consider the n-dimensional modified quasi-geostrophic(SQG) equations δtθ + u·△↓θ+kΛ^αθ=0, u = Λ^α-1R^⊥θ with κ 〉 0, α∈(0, 1] and θ0∈ W^1,∞(R^n). In this paper, we establish a different proof for the global regularity of this system. The original proof was given by Constantin, Iyer, and Wu, who employed the approach of Besov space techniques to study the global existence and regularity of strong solutions to modified critical SQG equations for two dimensional case.The proof provided in this paper is based on the nonlinear maximum principle as well as the approach in Constantin and Vicol.
杨婉蓉酒全森
Local Well-Posedness and Blow Up Criterion for the Inviscid Boussinesq System in Holder Spaces被引量:3
2012年
We prove the local in time existence and a blow up criterion of solution in the Holder spaces for the inviscid Boussinesq system in RN,N ≥ 2, under the assumptions that the initial values θo,uo ∈ Cr, with 1 〈 r ≠ 2.
CUI XiaonaDOU ChangshengJIU Quansen
Global Well-posedness for 3D Generalized Navier-Stokes-Boussinesq Equations被引量:1
2016年
In this paper,we study the Cauchy problem for the 3D generalized Navier-Stokes-Boussinesq equations with fractional diffusion:{ut+(u·▽)u+v∧^2αu=-▽p+θe3,e3=(0,0,1)^T,θt+(u·▽)θ=0,Dicu=0. With the help of the smoothing effect of the fractional diffusion operator and a logarithmic estimate,we prove the global well-posedness for this system with α≥5/4.Moreover,the uniqueness and continuity of the solution with weaker initial data is based on Fourier localization technique.Our results extend ones on the 3D Navier-Stokes equations with fractional diffusion.
Quan-sen JIUHuan YU
Some Remarks on Planar Boussinesq Equations
2012年
The main purpose of this paper is to prove the well-posedness of the two-dimensional Boussinesq equations when the initial vorticity wo C L^1 (R^2) (or the finite Radon measure space). Using the stream function form of the equations and the Schauder fixed-point theorem to get the new proof of these results, we get that when the initial vorticity is smooth, there exists a unique classical solutions for the Cauchy problem of the two dimensional Boussinesq equations.
Xiao-jing CAIChun-yan XUEXian-jin LIYing LIUQuan-sen JIU
Navier边界条件下湖方程的边界层问题
2012年
考虑光滑区域上二维粘性湖方程在Navier边界条件下的无粘极限问题,证明了具有Navier边界条件粘性湖方程的边界层在Sobolev空间中是非线性稳定的,验证了具有较弱强度的边界层的渐近展开的合理性.
蔡晓静酒全森牛冬娟
Global L^2 Stability of the Nonhomogeneous Incompressible Navier–Stokes Equations
2013年
In this paper, the problem of the global L^2 stability for large solutions to the nonhomogeneous incompressible Navier-Stokes equations in 3D bounded or unbounded domains is studied. By delicate energy estimates and under the suitable condition of the large solutions, it shows that if the initial data are small perturbation on those of the known strong solutions, the large solutions are stable.
Xiao Jing CAIQuan Sen JIUYan Jie ZHOU
关键词:STABILITY
THE GLOBAL L^2 STABILITY OF SOLUTIONS TO THREE DIMENSIONAL MHD EQUATIONS被引量:1
2013年
In this paper, we mainly study the global L2 stability for large solutions to the MHD equations in three-dimensional bounded or unbounded domains. Under suitable conditions of the large solutions, it is shown that the large solutions are stable. And we obtain the equivalent condition of this stability condition. Moreover, the global existence and the stability of two-dimensional MHD equations under three-dimensional perturbations are also established.
李现今蔡晓静
关键词:STABILITY
共1页<1>
聚类工具0