Profilin is an actin-binding protein that shows complex effects on the dynamics of the actin cytoskeleton. There are five profilin isoforms in Arabidopsis thaliana L. However, it is still an open question whether these isoforms are functionally different. In the present study, two profilin isoforms from Arabidopsis, PRF1 and PRF2 were fused with green fuorescent protein (GFP) tag and expressed in Escherichia coil and A. thaliana in order to compare their biochemical properties in vitro and their cellular distributions in vivo. Biochemical analysis revealed that fusion proteins of GFP-PRF1 and GFP-PRF2 can bind to poly-L-proline and G-actin showing remarkable differences. GFP-PRF1 has much higher affinities for both poly-L-proline and G-actin compared with GFP-PRF2. Observations of living cells in stable transgenic A. thaliana lines revealed that 35S::GFP-PRF1 formed a filamentous network, while 35S::GFP-PRF2 formed polygonal meshes. Results from the treatment with latrunculin A and a subsequent recovery experiment indicated that filamentous alignment of GFP-PRF1 was likely associated with actin filaments. However, GFP-PRF2 localized to polygonal meshes resembling the endoplasmic reticulum. Our results provide evidence that Arabidopsis profllin isoforms PRF1 and PRF2 have different biochemical affinities for poly-L-proline and G-actin, and show distinctive Iocalizations in living cells. These data suggest that PRF1 and PRF2 are functionally different isoforms.
The villin/gelsolin/fragmin superfamily is a conserved Ca^2+-dependent family of actin-regulating proteins that is widely present both in mammalian and non-mammalian organisms. They have traditionally been characterized by the same core of three or six tandem gelsolin subdomains. The study in vertebrates and lower eukaryotic cells has revealed that the villin/gelsolin/fragmin superfamily of proteins has versatile functions including severing, capping, nucleating or bundling actin filaments. In plants, encouraging progress has been made in this field of research in recent years. This review will summarize the identified plant homologs of villin/gelsolin/fragmin superfamily, thus providing a basis for reflection on their biochemical activities and functions in plants.
Hui Su Ting Wang Huaijian Dong Haiyun Ren (Key Laboratory of Cell Proliferation and Regulation Biology of Ministry of Education