It is known that there is a 1-1 correspondence between the first cohomology of the sheaf O(-k-2) over the projective space and the solutions to the k-Cauchy-Fueter equations on the quaternionic space Hn.We find an explicit Radon-Penrose type integral formula to realize this correspondence:given a -closed(0,1)form f with coefficients in the(-k-2)th power of the hyperplane section bundle H-k-2,there is an integral representation Pf such that ι*(Pf) is a solution to the k-Cauchy-Fueter equations,where ι is an embedding of the quaternionic space Hn into C4n.
The integral representation of differentiable functions in Octonion space is obtained and the explicit solution of the inhomogeneous Cauchy-Riemann equation is given by integral representation. As an application, the Cousin problem analogue of Mittag-Laffier problem is discussed.
By means of the method of solid angle coefficients and the permutation formula on the building domain of complex biballs,direct solutions of some singular integral equations with variable coefficients are discussed and the explicit formulas for these solutions are obtained.