Suppose that G is a planar graph with maximum degree △. In this paper it is proved that G is total-(△ + 2)-choosable if (1) △ ≥ 7 and G has no adjacent triangles (i.e., no two triangles are incident with a common edge); or (2) △ ≥6 and G has no intersecting triangles (i.e., no two triangles are incident with a common vertex); or (3) △ ≥ 5, G has no adjacent triangles and G has no k-cycles for some integer k ∈ {5, 6}.
A total k-coloring of a graph G is a coloring of V(G) ∪ E(G) using k colors such that no two adjacent or incident elements receive the same color.The total chromatic number χ〃(G) is the smallest integer k such that G has a total k-coloring.In this paper,it is proved that the total chromatic number of any graph G embedded in a surface Σ of Euler characteristic χ(Σ)≥0 is Δ(G) + 1 if Δ(G)≥10,where Δ(G) denotes the maximum degree of G.
HOU JianFeng 1,2,WU JianLiang 2,LIU GuiZhen 2 & LIU Bin 2 1 Center for Discrete Mathematics,Fuzhou University,Fuzhou 350002,China
A proper vertex coloring of a graph G is linear if the graph induced by the vertices of any two color classes is the union of vertex-disjoint paths. The linear chromatic number lc(G) of the graph G is the smallest number of colors in a linear coloring of G. In this paper, it is proved that every planar graph G with girth g and maximum degree A has (1) lc(G) ≤ △ + 21 if △ ≥ 9; (2) lc(G) ≤[△/2]+ 7 if g≥5; (3) lc(G) ≤ [△/2]+2ifg≥7and△ ≥7.