该文基于SM AC(s im p lified m arker and ce ll)方法,发展了一种在任意曲线坐标系中求解三维粘性不可压湍流R eyno lds时均方程的全隐式数值方法。基本方程是以逆变速度为变量的R eyno lds时均动量方程和椭圆型压力Po isson方程,并采用标准k-ε湍流模型封闭方程组。压力Po isson方程用T schebyscheff SLOR方法交替方向迭代求解。R eyno lds时均动量方程、k方程和ε方程对流项均采用Chakravarthy-O sher TVD格式离散,该格式不但有助于提高数值稳定性,而且能有效消除网格扭曲较大的地方产生的非物理振荡误差。用自编程序对后台阶方腔流场进行了计算,计算结果和实验结果吻合较好。
基于简化标记和单元(Simplified marker and cell,SMAC)方法,发展一种在任意曲线坐标系中求解三维非定常不可压湍流Reynolds时均方程的隐式数值方法。控制方程包括以逆变速度为变量的动量方程、压力Poisson方程和k-ε湍流模型方程,控制方程的离散在三维标记和单元(Marker and cell,MAC)交错网格系统中进行。为提高方程数值计算的稳定性,动量方程、k方程和ε方程对流项离散均采用Chakravarthy-Osher总变差衰减(Total variation diminishing,TVD)格式。动量方程、k方程和ε方程离散后的代数方程组采用循环三对角阵算法(Cyclic tridiagonal matrix algorithm,CTDMA)方法进行求解,Poisson方程离散后的代数方程组采用Tschebyscheff超线性松弛(successive linear over relaxation,SLOR)方法交替方向迭代求解。用该方法自编程序对简化后的射流放水阀内非定常流场进行数值模拟,计算结果和试验结果吻合。