Neodymium-doped strontium bismuth titanate (SrBi4-xNdxTi4O15) ferroelectric thin films were fabricated using the sol-gel method on Pt/Ti/SiO2/Si substrates. The influence of Nd content on the microstructure and ferroelectric properties of SrBi4-xNdxTi4O15 thin films were systematically studied. The results indicated that the SrBi3.88Nd0.12Ti4O15 (SBNT0.12) thin films had better ferroelectric properties, with a remanent polarization of (2Pr) of 34.3 μC/cm^2 and a coercive field (2Ec) of 220 kV/cm. This could be attributed to the fact that SBNT0.12 ferroelectric thin films consisted of more and larger ball-like grains, approximately 150-200 nm, with structure distortion, which greatly contributed to the improvement of the ferroelectric properties of the films. Furthermore, the film exhibited a good fatigue resistant property. The value of 2Pr after 10^10 switching cycles did not change significantly. The SrBi3.88Nd0.12Ti4O15 films were promising candidates for the application of FeRAMs.
Using the Landauer formalism that combines both the non-equilibrium Green's function (NEGF) and first-principles density functional theory (DFT), the electron transport characteristics of one-dimensional molecular switching device based on the capped carbon nanotubes have been investigated. The results show that the transmission can be efficiently tuned within two orders of magnitude just by changing 0.2 nm of the tube-tube separation. Moreover, the electron transport is insensitive to the topology of the facing conformations which can improve the practical stability of the chosen system as a molecular switch.