In this paper, we provide a separation theorem for the singular linear quadratic (LQ) control problem of ItS-type linear systems in the case of the state being partially observable. Above all, the Kalmam Bucy filtering of the dynamics is given by means of Girsanov transformation, by which the suboptimal feedback control of the LQ problem is determined. Furthermore, it is shown that the well-posedness of the LQ problem is equivalent to the solvability of a generalized differential Riccati equation (GDRE).
This paper deals with the infinite horizon linear quadratic (LQ) differential games for discrete-time stochas- tic systems with both state and control dependent noise. The Popov-Belevitch-Hautus (PBH) criteria for exact observability and exact detectability of discrete-time stochastic systems are presented. By means of them, we give the optimal strategies (Nash equilibrium strategies) and the optimal cost values for infinite horizon stochastic differential games. It indicates that the infinite horizon LQ stochastic differential gaines are associated with four coupled matrix-valued equations. Further- more, an iterative algorithm is proposed to solve the four coupled equations. Finally, an example is given to demonstrate our results.