The objectives of the present study were to estimate genetic diversity and genetic changes of introgression lines (ILs) which derived from cultivated rice (Oryza sativa L. cv. Xieqingzao B, XB) mating with common wild rice (O. rufipogon Griff., CWR). The genetic data of 239 ILs were based on a total of 131 polymorphic microsatellite (SSR) markers distributed across the 12 chromosomes of rice. On average, these ILs possessed 77.1 and 14.31% homozygous bands from XB and CWR, respectively. Most of the ILs were clustered together with XB individual, which was revealed by principal coordinate analysis (PCA) and the program STRUCTURE analysis. The result from PCA demonstrated that some intermediate genotypes between XB and CWR were also found. Moreover, there were some genomic sequence changes including parental bands elimination and novel bands emergence in the ILs. The average Nei's gene diversity (He) was 0.296, which was higher than that of cultivated rice. It suggested that interspecific hybridization and gene introgression could broaden the base of genetic variation and lay an important foundation for rice genetic improvement. These different genotypic ILs would provide a better experimental system for understanding the evolution of rice species and the mechanism of alien gene introgression.
DENG Xiao-juanLUO Xiang-dongDAI Liang-fangCHEN Ya-lingHU Biao-linXIE Jian-kun
[Objective] The aim of this study was to further investigate and utilize the natural anthocyanidin from Rhododendron L. [Method] Using Rhododendron L. with four different colors including white, pink, red and purple as the test materials, its anthocyanidin extraction methods were analyzed in this study to evaluate the spectral properties and its stability of various anthocyanidin. [Result] The anthocyanidin from Rhododendron L. was perfectly extracted by methanol with 1% concentrated hydrochloric acid (V/V) and had better stability in this extraction solution. The further experiment in vitro indicated that the anthocyanidin from Rhododendron L. became stable with pH value of 0-3, but could not resistant to high temperature or strong light, and the alkaline condition had also great effects on its stability. [Conclusion] The methanol with 1% concentrated hydrochloric acid (V/V) has the best effect for extraction, and the anthocyanidin from Rhododendron L. is more stable in low temperature, weak light and acid conditions.
[Objective] The aim of the study was to make research on genomic struc- ture variation and variety analysis of Dongxiang wild rice. [Method] Introgression groups of BC1F6 were based on donor of Oryza rufipogon Griff. and receptor of O. sativa sp. indica Kate. Strains of 239 in the group were analyzed on Polymor- phism with the help of 25 couples of SSR primers distributed in 12 pairs of chromo- somes. [Result] Gene fragments of O. rufipogon Griff. were found penetrated in the 25 microsatellite sites and most of the groups kept the parents of Xieqinzao B or DNA sequence of O. rufipogon Griff. The average rate of recurrent homozygous bands was 78.13% in the ILs, but the highest was 94.98% (amplified by primer RM131) and the lowest was 60.25% (RM171). The average rate of donor homozy- gous bands was 13.37%, but the highest was 32.64% (RM171) and the lowest was 2.93% (RM1095). There were numerous heterozygous sites in the population and the average heterozygosis rate was 5.62%, while the highest was 10.04%(RM401). Moreover, we found some parental fragments were lost and some novel fragments were not detected in either parent in BC1F6 population. The average rate of lost bands was 2.88%, while the highest was 13.39% (RM311) and the lowest was 0 (RM401). The average rate of new bands was 1%. The average of Nei's gene di- versity (He) and Shannon's Information index (I) were 0.276 and 0.457 respectively in high generation of introgression lines. [Conclusion] The study demonstrated that distant hybridization led to extensive genetic and epigenetic variations in high gener- ation of introgression lines, which expanded the base of genetic variation and laid an important foundation for rice improvement and germplasm innovation.