In one step inverse finite element approach, an initial blank shape is normally predicted from the final deformed shape. The final deformed shape needs to be trimmed into a final part after stamping, the trimmed area, therefore, needs to be compensated manually before using one step inverse approach, which causes low efficiency and in consistency with the real situation. To solve this problem, one step positive approach is proposed to simulate the sheet metal stamping process. Firstly the spatial initial solution of one step positive method is preliminarily obtained by using the mapping relationship and area coordinates, then based on the deformation theory the iterative solving is carried out in three-dimensional coordinate system by using quasi-conjugate-gradient method. During iterative process the contact judgment method is introduced to ensure that the nodes on the spatial initial solution are not separated from die surface. The predicted results of sheet metal forming process that include the shape and thickness of the stamped part can be obtained after the iterative solving process. The validity of the proposed approach is verified by comparing the predicted results obtained through the proposed approach with those obtained through the module of one step inverse approach in Autoform and the real stamped part. In one step positive method, the stamped shape of regular sheet can be calculated fast and effectively. During the iterative solution, the quasi-conjugate-gradient method is proposed to take the place of solving system of equations, and it can improve the stability and precision of the algorithm.