When subjected to voltage,the dielectric elastomer membrane reduces its thickness and expands its area under the resulting compressive force.This characteristic enables the dielectric elastomer actuators of different structures to be designed and fabricated.By employing the thermodynamic theory and research method proposed by Suo et al.,an equilibrium equation of folded dielectric elastomer actuator with two generalized coordinates is established.The governing equations of failure models involving electromechanical instability,zero electric field,electrical breakdown,loss of tension,and rupture by stretch are also derived.The allowable areas of folded dielectric elastomer actuators are described.These results could provide a powerful guidance to the design and performance evaluation of the dielectric elastomer actuators.
The deployable structures based on shape memory polymer com-posites(SMPCs)have been developed for its unique properties,such as high reliability,low-cost,lightweight,and self-deployment without complex mechanical devices compared with traditional deployable structures.In order to increase the inflatable structure system’s robustness and light the weight of it,a cubic deployable support structure based on SMPC is designed and analyzed pre-liminarily.The cubic deployable support structure based on SMPC consists of four dependent spatial cages,each spatial cage is composed of 12 three-longeron SMPC truss booms and end con-nections.The shape recovery of arc-shaped deployable laminates drive the three-longeron SMPC truss booms to unfold,thus realize the expansion of the deployable support structure.The concept and operation of the cubic deployable support structure are described in detail.A series of experiments are performed on the three-longeron deployable laminates unit and the simplified cubic deployable support structure to investigate the shape recovery behavior in the deployment process.Results indicate that the cubic deployable support structure has a high deployment-tgo-stowage volume ratio and can achieve self-deployment,package,and deploy without complex mechanical devices.
This paper summarizes the research progress of dielectric elastomer(DE)and its composite materials,including the introduction of materials,theoretical research development,and typical applications.First of all,the DE composite materials are introduced.Then,the theoretical research development of DEs is summarized.Finally,some applications as well as research prospects about DEs are listed.