Accurate wetland delineation is the basis of wetland definition and mapping, and is of great importance for wetland management and research. The Zoige Plateau on the Qinghai-Tibet Plateau was used as a research site for research on alpine wetland delineation. Several studies have analyzed the spatiotemporal pattern and dynamics of these alpine wetlands, but none have addressed the issues of wetland boundaries. The objective of this work was to discriminate the upper boundaries of alpine wetlands by coupling ecological methods and satellite observations. The combination of Landsat 8 images and supervised classification was an effective method for rapid identification of alpine wetlands in the Zoig6 Plateau. Wet meadow was relatively stable compared with hydric soils and wetland hydrology and could be used as a primary indicator for discriminating the upper boundaries of alpine wetlands. A slope of less than 4.5° could be used as the threshold value for wetland delineation. The normalized difference vegetation index (NDVI) in 434 field sites showed that a threshold value of 0.3 could distinguish grasslands from emergent marsh and wet meadow in September. The median normalized difference water index (NDWI) of emergent marsh remained more stable than that of wet meadow and grasslands during the period from September until July of the following year. The index of mean density in wet meadow zones was higher than the emergent and upland zones. Over twice the number of species occurred in the wet meadow zone compared with the emergent zone, and close to the value of upland zone. Alpine wetlands in the three reserves in 2014 covered 1175.19 kin2 with a classification accuracy of 75.6%. The combination of ecological methods and remote sensing technology will play an important role in wetland delineation at medium and small scales. The correct differentiation between wet meadow and grasslands is the key to improving the accuracy of future wetland delineation.
Accurate estimation of wetland carbon pools is a prerequisite for wetland resource conservation and implementation of carbon sink enhancement plans.The inventory approach is a realistic method for estimating the organic carbon pool in China's wetlands at the national scale.An updated data and inventory approach were used to estimate the amount of organic carbon stored in China's wetlands.Primary results are as follows:(1) the organic carbon pool of China's wetlands is between 5.39 and 7.25 Pg,accounting for 1.3%-3.5% of the global level;(2) the estimated values and percentages of the organic carbon contained in the soil,water and vegetation pools in China's wetlands are 5.04-6.19 Pg and 85.4%-93.5%,0.22-0.56 Pg and 4.1%-7.7%,0.13-0.50 Pg and 2.4%-6.9%,respectively.The soil organic carbon pool of China's wetlands is greater than our previous estimate of 3.67 Pg,but is lower than other previous estimates of 12.20 and 8-10 Pg.Based on the discussion and uncertainty analysis,some research areas worthy of future attention are presented.