代码搜索和API推荐算法能够帮助开发者有效实现编程任务。截至目前,研究者们发表了一系列相关文献。尽管一些学者对该研究领域的背景和研究现状进行了阐述,但是研究者对该领域中的一些基本领域知识还缺乏了解,如最高产的作者、机构和国家,影响力较大的作者和文献,以及流行的热点研究等。借助经典的文献分析框架,在构建该研究领域文献数据仓库的基础上,首次对该领域的研究进行了基础文献分析和合作模式探索。一方面,基础文献分析的结果表明,近几年越来越多的研究者开始关注该领域的研究,最高产的作者是Cristina Videira Lopes,University of California at Irvine是发表相关文献最多的机构,大部分文献来自美国,根据领域H因子计算得到的最有影响力的作者是Denys Poshyvanyk。另一方面,合作模式的分析结果显示,Tao Xie,Cristina Videira Lopes和Denys Poshyvany是该领域最活跃的三位作者,推荐算法性能的提升及其在软件工程任务中的应用是目前该领域最流行的研究主题。
In crowdsourced mobile application testing, workers are often inexperienced in and unfamiliar with software testing. Meanwhile, workers edit test reports in descriptive natural language on mobile devices. Thus, these test reports generally lack important details and challenge developers in understanding the bugs. To improve the quality of inspected test reports, we issue a new problem of test report augmentation by leveraging the additional useful information contained in duplicate test reports. In this paper, we propose a new framework named test report augmentation framework (TRAF) towards resolving the problem. First, natural language processing (NLP) techniques are adopted to preprocess the crowdsourced test reports. Then, three strategies are proposed to augment the environments, inputs, and descriptions of the inspected test reports, respectively. Finally, we visualize the augmented test reports to help developers distinguish the added information. To evaluate TRAF, we conduct experiments over five industrial datasets with 757 crowdsourced test reports. Experimental results show that TRAF can recommend relevant inputs to augment the inspected test reports with 98.49% in terms of NDCG and 88.65% in terms of precision on average, and identify valuable sentences from the descriptions of duplicates to augment the inspected test reports with 83.58% in terms of precision, 77.76% in terms of recall, and 78.72% in terms of F-measure on average. Meanwhile, empirical evaluation also demonstrates that augmented test reports can help developers understand and fix bugs better.