Prestack reverse time migration(PSTM) is a common imaging method; however low-frequency noises reduce the structural imaging precision. Thus, the suppression of migration noises must be considered. The generation mechanism of low-frequency noises is analyzed and the up-, down-, left-, and right-going waves are separated using the Poynting vector of the acoustic wave equation. The computational complexity and memory capacitance of the proposed method are far smaller than that required when using the conventional separation algorithm of 2D Fourier transform. The normalized wavefield separation crosscorrelation imaging condition is used to suppress low-frequency noises in reverse time migration and improve the imaging precision. Numerical experiments using the Marmousi model are performed and the results show that the up-, down-, left-, and right-going waves are well separated in the continuation of the wavefield using the Poynting vector. We compared the imaging results with the conventional method, Laplacian filtering, and wavefield separation with the 2D Fourier transform. The comparison shows that the migration noises are well suppressed using the normalized wavefield separation cross-correlation imaging condition and higher precision imaging results are obtained.
We establish a patchy saturation model and derive the seismic wave equations for patchy saturated porous media on the basis of Biot's equations and Johnson's bulk modulus. We solve the equations, obtain the attenuation coefficients, and analyze the characteristics of wave attenuation in the seismic frequency range. The results suggest that seismic waves show attenuation and dispersion in partially saturated rocks in the low frequency range. With frequency increasing, attenuation increases. The attenuation of P-waves of the second kind is more pronounced in agreement with Biot's theory. We also study the effect of porosity, saturation, and inner sphere radius on the attenuation of the P-waves of the first kind and find that attenuation increases with increasing frequency and porosity, and decreases with increasing frequency and degree of saturation. As for the inner sphere radius, wave attenuation is initially increasing with increasing frequency and inner sphere radius less than half the outer radius. Subsequently, wave attenuation decreases with increasing frequency and inner sphere radius is higher than half the outer sphere radius.
We investigated the effect of microscopic distribution modes of hydrates in porous sediments, and the saturation of hydrates and free gas on the elastic properties of saturated sediments. We simulated the propagation of seismic waves in gas hydrate-bearing sediments beneath the seafloor, and obtained the common receiver gathers of compressional waves(P-waves) and shear waves(S-waves). The numerical results suggest that the interface between sediments containing gas hydrates and free gas produces a large-amplitude bottomsimulating reflector. The analysis of multicomponent common receiver data suggests that ocean-bottom seismometers receive the converted waves of upgoing P- and S-waves, which increases the complexity of the wavefield record.