In this work, we make the best use of the vanadium element; a series of A1-V-B alloys and VB2/A390 composite alloys were fabricated. For Ak-10V-6B alloy, the grain size of VB2 can be controlled within about 1 μm and is distributed uniformly in the AI matrix. Further, it can be found that VB2 promises to be a useful reinforcement particle for piston alloy. The addition of VB2 can improve the mechanical properties of the A390 composite alloys significantly. The results show that with 1 % VB2 addition, A390 composite alloy exhibits the best performance. Compared with the A390 alloy, the coefficient of thermal expansion is 13.2 × 10^-6 K-1, which decreased by 12.6%; the average Brinell hardness can reach 156.5 HB, wear weight loss decreased by 28.9% and ultimate tensile strength at 25℃ (UTS25 ℃) can reach 355 MPa, which increased by 36.5%.
P modification has been widely used in Al-Si piston industry, but trace of Ca element has great influence on the P modification efficiency. In this work, it is found that primary Si can be heterogeneously nucleated by AlP in near eutectic AI-12.6Si alloy, but Ca element may destroy the P modification efficiency, whereas the addition of B can recover the P modification efficiency in near eutectic Al- 12.6Si alloy with high Ca containing. The microstructure transformation was related to the reaction of Ca, B, and AlP. According to the thermodynamic calculation, Ca may react with AlP and form Ca3P2 compound in Al-Si alloy, whereas, when B was added into the melt, AlP could be reformed. The reaction of Ca, B, and AlP can be shown as fol- lows: 2AlP + 3Ca Ca3P2 + 2AI; Ca3P2 + 18B + 2Al 3CAB6+ 2ALP. In addition, with B added into the AI-12.6Si alloy with Ca and P addition, the mechanical properties were improved compared with single Ca and/or P addition.