A 3D probe used for NC\|copying process is proposed in the paper. The construction of parallel springs is adopted in the probe. It has compact structure and little volume. By adjusting spring force and improving sensitivity, the probe can be used in CMM. Errors of the probe are analysed. Performances of the probe are verified by test of measuring force, verification of precision of single axis and plane precision.
On the basis of existing techniques, a compact micro-displacement sensor of phase grating interference (PGI) is described, which adopts cylindrical hologram diffraction grating as the calibration standard. The optical principle of the sensor is explained, and the relation between the grating motion displacement and the phase shift of interference stripes is deduced. The improvement of the integral structure and the method of photoelectric signal processing are described in detail. With the software system based on the virtual instrument development platform Labwindows/CVI and other hardwares such as the precision displacement worktable, the surfaces of typical parts are measured and the characterization results are given. The sensor has wide measuring range and high resolution, its sensitivity and resolution being independent of the wavelength of the incident light. The vertical measuring range is 0-6 mm, and the vertical resolution is 0.005μm. The experimental results show that the sensor can be used to measure and characterize the surface topography parameters of the plane and curved surface.
A profilometer used for 3 dimension measurement of micro-surface topography is presented. The instrument is based on the vertical scanning microscopic interferometry (VSMI). A Linnik type interference microscope is used and the interferograms which present changes of surface profile are recorded with a CCD camera. A developed nano-positioning work stage with an integrated optical grating displacement measuring system realizes the precise vertical scanning motion during profile measurement. By a white-light phase shifting algorithm of arbitrary step, frames of interferograms are processed by a computer to rebuild and evaluate the measured profile. Because of the specialty of VSMI, the profilometer is suitable for both smooth and rough surface measurement. It can also be used to measure curved surfaces, dimension of micro electro mechanical systems (MEMS), etc. The vertical resolution of the profilometer is 0.5 nm, and lateral resolution 0.5 μm.