We theoretically investigate the electron transmission through a seven-layer semiconductor heterostructure with the Dresselhaus spin-orbit coupling under two applied oscillating fields. Numerical results show that both of the spindependent symmetric Breit-Wigner and the asymmetric Fano resonances appear and that the properties of these two types of resonance peaks are dependent on the amplitudc and the relative phases of the two applicd oscillating fields. The modulation of the spin-polarization efficiency of transmitted electrons by the relative phase is also discussed.