Multi-vesicular bodies in endocytosis and protoplasts are special cellular structures that are consid-ered to be originated from invagination of plasma membranes. However, the genesis and function of multi-vesicular bodies, the relationship with Golgi bodies and cell walls, and their secretory pathways remain controversial and ambiguous. Using a monoclonal antibody against an animal 58K protein, we have detected, by Western blotting and confocal microscopy, that a 58K-like protein is present in the calli of Arabidopsis thaliana and Hypericum perforatum. The results of immuno-electron microscopy showed that the 58K-like protein was located in the cisternae of Golgi bodies, secretory vesicles, multi-vesicular bodies, cell walls and vacuoles in callus of Arabidopsis thaliana, suggesting that the multi-vesicular bodies may be originated from Golgi bodies and function as a transporter carrying substances synthesized in Golgi bodies to cell walls and vacuoles. It seems that multi-vesicular bodies have a close relationship with the development of the cell wall and vacuole. The possible secretory pathways of multi-vesicular bodies might be in exocytosis, in which multi-vesicular bodies carry sub-stances to the cell wall for its construction, and in endocytosis, in which multi-vesicular bodies carry substances to the vacuole for its development, depending on what they carry and where the materials are transported. We hence propose that there is more than one pathway for the secretion of multi-vesicular bodies. In addition, our results provided a paradigm that a plant molecule, such as the 58k-like protein in callus of Arabidopsis thaliana, can be detected using a cross-reactive monoclonal antibody induced by an animal protein, and illustrate the existence of analog molecules in both animal and plant kingdoms.
The casepase is considered to regulate the process of programmed cell death in the development of organisms. In this study, caspase 3-like protease was detected by immunohistochemistry and immunoelectron microscopy during the development of sieve element and tracheary element of stem in Cucurbita moschata Duch. Antibody with brown color (under light microscopy) and gold particles (under transmission electron microscopy) for detecting caspase 3-like protease was mainly displayed in inner phloem, external phloem and xylem in the region close to procambium. From the results it was considered that caspase 3-like protease did exist in vascular elements and played different roles during the development of sieve and tracheary elements, and different types of programmed cell death might be carried out. The caspase 3-like protease mainly participated in making cytoplasmic streaming cease and in degrading P-protein bodies; however, it rarely participated in the function for signal transferring in the developmental sieve element. However, it might induce calcium accumulation for rupturing the tonoplast in the signal of PCD in the developmental tracheary element.