We construct stable invariant manifolds for semiflows generated by the nonlinear impulsive differential equation with parameters x'= A(t)x + f(t, x, λ), t≠τi and x(τ+i) = Bix(τi) + gi(x(τi), λ), i ∈ N in Banach spaces, assuming that the linear impulsive differential equation x'= A(t)x, t≠τi and x(τ+i) = Bix(τi), i ∈ N admits a nonuniform (μ, ν)-dichotomy. It is shown that the stable invariant manifolds are Lipschitz continuous in the parameter λ and the initial values provided that the nonlinear perturbations f, g are sufficiently small Lipschitz perturbations.