In order to investigate chromium contamination of coal mine water, to analyze chromium leaching mechanism and to evaluate environment pollution potential of coal mine water, we perform site investigations, physical and computer modeling in the Xuzhou-Datun coal mine district. The result of our test samples shows that chromium concentration was 9 μg/L in roof leachate and 3 μg/L in coal leachate. The host rock has a higher pollution potential than that of coal seams. Leaching experiments and XRD test results indicate that chromium is released from the process of transforming illite to kaolinite. The pH, pe and temperature of coal mine water affect the chromium leaching behavior. Modeling results suggest that the adsorption of adsorbents controls chromium concentration in coal mine water. The chromium adsorption ratio is quite low in both an acid and in an alkaline environment. Therefore, coal mine water has a high pollution potential. Under other conditions, chromium adsorption is stronger in a neutral water environment, so that chromium concentrations may be very low.
SHAN Yao QIN Yong, WANG Wenfeng School of Resource and Earth Science, China University of Mining & Technology, Xuzhou 221116, China