The feasibility of measuring crater geometries by use of optical coherence tomography (OCT) is examined. Bovine shank bone on a motorized translation stage with a motion velocity of 3 mm/s is ablated with a pulsed CO2 laser in vitro. The laser pulse repetition rate is 60 Hz and the spot size on the tissue surface is 0.5 mm. Crater geometries are evaluated immediately by both OCT and histology methods after laser irradiation. The results reveal that OCT is capable of measuring crater geometries rapidly and noninvasively as compared to histology. There are good correlation and agreement between crater depth estimates obtained by two techniques, whereas there exists distinct difference between crater width estimates when the carbonization at the sides of craters is not removed.
The influence of scanning speed on hard bone tissue ablation is studied with a 10.6-μm laser. The groove morphology and the thermal damage created in bovine shank bone by pulsed CO2 laser are examined as a function of incident fluence by optical microscope following standard histological processing. The results show that ablation groove width, depth and ablation volume, as well as the zone of thermal injury, increase gradually with incident fluence. As compared to the result for high scanning speed, the lower scanning speed always produces larger ablation volume but thicker zone of thermal injury. It is evident that scanning speed plays an important role in the ablation process. In clinical applications, it is important to select appropriate scanning speed to obtain both high ablation rates and minimal thermal injury.
Pulsed laser ablation of soft biological tissue was studied at 10.6-, 2.94-, and 2.08-μm wavelengths. The ablation effects were assessed by means of optical microscope, the ablation crater depths were measured with reading microscope. It was shown that Er:YAG laser produced the highest quality ablation with clear, sharp cuts following closely the spatial contour of the incident beam and the lowest fluence threshold. The pulsed CO2 laser presented the moderate quality ablation with the highest ablation efficiency. The craters drilled with Ho:YAG laser were generally larger than the incident laser beam spot, irregular in shape, and clearly dependent on the local morphology of biotissue. The ablation characteristics, including fluence threshold and ablation efficiency, varied substantially with wavelength. It is not evident that water is the only dominant chromophore in tissue.