In this paper, we obtain the joint empirical likelihood confidence regions for a finite number of quantiles under strong mixing samples. As an application of this result, the empirical likelihood confidence intervals for the difference of any two quantiles are also obtained.
Suppose that we have a partially linear model Yi = xiβ + g(ti) +εi with independent zero mean errors εi, where (xi,ti, i = 1, ... ,n} are non-random and observed completely and (Yi, i = 1,...,n} are missing at random(MAR). Two types of estimators of β and g(t) for fixed t are investigated: estimators based on semiparametric regression and inverse probability weighted imputations. Asymptotic normality of the estimators is established, which is used to construct normal approximation based confidence intervals on β and g(t). Results are reported of a simulation study on the finite sample performance of the estimators and confidence intervals proposed in this paper.
The empirical likelihood is used to propose a new class of quantile estimators in the presence of some auxiliary information under positively associated samples. It is shown that the proposed quantile estimators are asymptotically normally distributed with smaller asymptotic variances than those of the usual quantile estimators.
The construction of confidence intervals for quantiles of a population under a associated sample is studied by using the blockwise technique. It is shown that the blockwise empirical likelihood (EL) ratio statistic is asymptotically X2-type distributed, which is used to obtain EL-based confidence intervals for quantiles of a population.
Oonsider two linear models Xi = U'β + ei, Yj = V1/2y + ηj with response variables missing at random. In this paper, we assume that X, Y are missing at random (MAR) and use the inverse probability weighted imputation to produce 'complete' data sets for X and Y. Based on these data sets, we construct an empirical likelihood (EL) statistic for the difference of X and Y (denoted as A), and show that the EL statistic has the limiting distribution of X~, which is used to construct a confidence interval for A. Results of a simulation study on the finite sample performance of EL-based confidence intervals on A are reported.