Much attention has recently been focused on the effects of climate variability and human activities on the runoff. In this study, we analyzed 56-yr(1957–2012) runoff change and patterns in the Jinghe River Basin(JRB) in the arid region of northwest China. The nonparametric Mann–Kendall test and the precipitation-runoff double cumulative curve(PRDCC) were used to identify change trend and abrupt change points in the annual runoff. It was found that the runoff in the JRB has periodically fluctuated in the past 56 yr. Abrupt change point in annual runoff was identified in the JRB, which occurred in the years around 1964 and 1996 dividing the long-term hydrologic series into a natural period(1957 – 1964) and a climate and man-induced period(1965 – 1996 and 1997 – 2012). In the 1965 – 1996 period, human activities were the main factor that decreased runoff with contribution of 88.9%, while climate variability only accounted for 11.1%. However,the impact of climate variability has been increased from 11.1% to 47.5% during 1997 – 2012, showing that runoff in JRB is more sensitive to climate variability during global warming. This study distinguishes theeffect of climate variability from human activities on runoff, which can do duty for a reference for regional water resources assessment and management.
地处干旱和半干旱气候区的中亚地区脆弱的生态环境对气候变化非常敏感,提高气候模式在中亚地区的模拟能力为应对未来气候变化制订科学的措施非常必要。利用两种分辨率的北京气候中心BCC_CSM模式(低分辨率BCC_CSM1.1模式和高分辨率BCC_CSM1.1m模式)提供的1948-2012年间CMIP5历史模拟试验结果系统评估了不同水平分辨率BCC_CSM气候模式对中亚夏季降水的模拟性能,并进一步揭示了水平分辨率对模式性能的影响,同时探讨了可能原因。结果表明:提高模式水平分辨率能够较明显地改善BCC_CSM气候模式对中亚夏季降水年际变率和长期变化趋势的模拟能力,但对整个中亚地区以及中亚西部地区夏季降水气候平均态的改善并不明显。相对于BCC_CSM1.1模式,BCC_CSM1.1 m模式对中亚东部地区夏季降水气候平均态、年际变率以及长期变化趋势的改善比西部地区更加显著。BCC_CSM1.1 m模式改善了对中亚地区夏季大尺度和对流性降水的长期变化趋势以及大尺度降水的气候平均态和年际变率的模拟能力,但对对流性降水气候平均态以及年际变率的模拟效果变得更差。总的说来,BCC_CSM1.1 m模式对中亚夏季总降水模拟性能的提高主要归功于对大尺度降水模拟的明显改善。机制分析表明提高模式水平分辨率能够改善BCC_CSM气候模式对200 h Pa西风环流以及850 h Pa环流场的模拟进而提高对中亚夏季降水的模拟性能。