MHC/peptide tetramer technology has been widely used to study antigen-specific T cells, especially for identifying virus-specific CD8^+ T cells in humans. The tetramer molecule is composed of HLA heavy chain, β2-microglobulin (β2m), an antigenic peptide, and fluorescent-labeled streptavidin. To further investigate the HLA-A*1101-restricted CD8^+ T cell responses against human cytomegalovirus (HCMV), we established an approach to prepare HLA-A*1101 tetramer complexed with a peptide from HCMV. The cDNA encoding HLA-A*1101 heavy chain was cloned and the prokaryotic expression vector for the ectodomain of HLA-A*1101 fused with a BirA substrate peptide (HLA-A*1101-BSP) at its carboxyl terminus was constructed. The fusion protein was highly expressed as inclusion bodies under optimized conditions in Escherichla coli. Moreover, HLA-A*1101-BSP protein was refolded in the presence of β2m and an HCMV peptide pp6516.24 (GPISGHVLK, GPI). Soluble HLA-A*1101-GPI monomer was biotinylated and purified to a purity of 95%, which was subsequently combined with streptavidin to form tetramers at a yield of 〉 80%. The HLA-A*1101-GPI tetramers could bind to virus-specific CD8^+ T cells, suggesting soluble HLA-A*1101-GPI tetramers were biologically functional. This study provides the basis for further evaluation of HLA-A*1101-restricted CD8^+ T cell responses against HCMV infection.
Fengyao LiLihui XuQingbing ZhaXiaoyun ChiQiantao JiaKianhui He
The phenotype and function of antigen-specific CD8 T cells are closely associated with the efficacy of a therapeutic vaccination. Here we showed that multiple immunizations with LCMV gp33-41 peptide (KAV) in Freund's adjuvant could induce KAV-specific CD8 T cells with low expression of CD127 and CD62L molecules. The inhibitory receptor PD-1 was also expressed on a substantial part of KAV-specific CD8 T cells, and its expression level on KAV-specific CD8 T cells in spleen and lymph nodes was much higher when compared to those in peripheral blood. Furthermore, KAV-specific CD8 T cells could specifically kill KAV-pulsed target cells in vivo but the efficiency was low. These data suggest that prime-boost vaccination schedule with peptide in Freund's adjuvant can elicit antigen-specific CD8 T cells of effector-like phenotype with partial functional exhaustion, which may only provide short-term protection against the pathogen. Cellular & Molecular Immunology.
Chinese-descent rhesus macaques have become more prevalent for HIV infection and vaccine investigation than Indian-origin macaques. Most of the currently available data and reagents such as major histocompatibility complex (MHC) class I tetramers, however, were derived from Indian-origin macaques due to the dominant use of these animals in history. Although there are significant differences in the immunogenetic background between the two macaque populations, they share a few of common MHC class I alleles. We reported in this study the procedure for preparation of a soluble Mamu-B*1703 (a MHC class I molecule of Chinese macaques) monomer and tetramer loaded with a dominant simian immunodeficiency virus (SIV) epitope IW9 (IRYPKTFGW) that was identified to be Mamu-B*1701-restricted in Indian macaques. The DNA fragment encoding the Mamu-B*1703 extracellular domain fused with a BirA substrate peptide (BSP) was amplified from a previously cloned cDNA and inserted into a prokaratic expression vector. In the presence of the antigenic peptide IW9 and light chain β2-microglobulin, the expressed heavy chain was refolded into a soluble monomer. After biotinylation, four monomers were polymerized as a tetramer by phycoerythrin-conjugated streptavidin. The tetramer, having been confirmed to have the right conformation, was a potential tool for investigation of antigen-specific CD8^+ T-lymphocytes in SIV vaccine models of Chinese macaques. And our results also suggested that some antigenic peptides reported in Indian-origin macaques could be directly recruited as ligands for construction of Chinese macaque MHC tetramers.