Density functional calculations are used to determine structural and electronic properties of P4,P4O6,P4O10,P20O30 and P20O50 clusters and their protonated derivatives.These oxygen-rich phosphorus oxides are predicted to have relatively high stabilities with respect to their components P4 and O2,and their unsaturated P and end-on O atoms as the proton acceptor can accommodate multiple protons to generate highly positively charged cationic clusters,such as P20O30H1010+.Calculations indicate that P4O6 and P20O30 have higher reactivity toward the proton capture than the P4,P4O10 and P20O50 clusters,and the most stable protonated clusters among these different series of cationic clusters are P4H2……2+,P4O6H2^2+,P4O10H3^3+,P20O30H4^4+ and P20O50H4^4+,respectively.The cage skeleton of the phosphorus oxide clusters shows high stability for the consecutive protonation,and the unsymmetrical stretching of the skeletal P-O bond and the wagging mode of P-H coupled with the P-O bond stretching have strong adsorptions.These computational findings are useful for further experimental and theoretical studies of novel phosphorus oxide clusters and their highly positively charged derivatives.
The density functional calculations were used to explore the dissociation energies of [N(CH3)4]+ and [P(CH3)4]+ and their derivatives from substitution of H for CH3.The results show that the dissociation energies of C—N and C—P bonds gradually increase as the number of hydrogen atoms bonded to N or P increases in the derivatives,showing a remarkable effect of the intramolecular structural environment on the dissociation of the bonds.This dependence of bond dissociation energies on the local structural environment can be ascribed to the hyperconjugation interactions between the C—H bond and lone single electron of N or P.On the basis of NBO analyses,the bonding properties of dissociated fragments and their effects on dissociation energies were discussed.
The catalytic oxidation of CO to CO2 by carbon monoxide dehydrogenases has been explored theoretically, and a large C-cluster model including the metal core [Ni-4Fe-4S] and surrounding residues and crystal water molecules was used in density functional calculations. The key species involved in the oxidation of CO at the C-cluster, Cred1, Cred2 and Cint, have been elucidated. On the basis of computational results, the plausible enzymatic mechanism for the CO oxidation was proposed. In the catalytic reaction, the first proton abstraction from the Fe(1)-bound water leads to a precursor to accommodate CO binding and the subsequently consecutive proton transfers from the metal-bound carboxylate to the amino acid residues facilitate the release of CO2. The hydrogen-bond network around the C-cluster formed by conserved residues His93, His96, Glu299, Lys563, and four water molecules in the active domain plays an important role in proton transfer and intermediate stabilization. Predicted geometries of key species show good agreement with the reported crystal structures.