A consistent test via the partial penalized empirical likelihood approach for the parametric hy- pothesis testing under the sparse case, called the partial penalized empirical likelihood ratio (PPELR) test, is proposed in this paper. Our results are demonstrated for the mean vector in multivariate analysis and regression coefficients in linear models, respectively. And we establish its asymptotic distributions under the null hypoth- esis and the local alternatives of order n-1/2 under regularity conditions. Meanwhile, the oracle property of the partial penalized empirical likelihood estimator also holds. The proposed PPELR test statistic performs as well as the ordinary empirical likelihood ratio test statistic and outperforms the full penalized empirical like- lihood ratio test statistic in term of size and power when the null parameter is zero. Moreover, the proposed method obtains the variable selection as well as the p-values of testing. Numerical simulations and an analysis of Prostate Cancer data confirm our theoretical findings and demonstrate the promising performance of the proposed method in hypothesis testing and variable selection.
We consider the problem of parameter estimation in both linear and nonlinear ordinary differential equation(ODE) models. Nonlinear ODE models are widely used in applications. But their analytic solutions are usually not available. Thus regular methods usually depend on repetitive use of numerical solutions which bring huge computational cost. We proposed a new two-stage approach which includes a smoothing method(kernel smoothing or local polynomial fitting) in the first stage, and a numerical discretization method(Eulers discretization method, the trapezoidal discretization method,or the Runge–Kutta discretization method) in the second stage. Through numerical simulations, we find the proposed method gains a proper balance between estimation accuracy and computational cost.Asymptotic properties are also presented, which show the consistency and asymptotic normality of estimators under some mild conditions. The proposed method is compared to existing methods in term of accuracy and computational cost. The simulation results show that the estimators with local linear smoothing in the first stage and trapezoidal discretization in the second stage have the lowest average relative errors. We apply the proposed method to HIV dynamics data to illustrate the practicability of the estimator.
In this paper, the parameters of a p-dimensional linear structural EV(error-in-variable)model are estimated when the coefficients vary with a real variable and the model error is time series.The adjust weighted least squares(AWLS) method is used to estimate the parameters. It is shown that the estimators are weakly consistent and asymptotically normal, and the optimal convergence rate is also obtained. Simulations study are undertaken to illustrate our AWLSEs have good performance.
We are concerned with robust estimation procedures to estimate the parameters in partially linear models with large-dimensional covariates. To enhance the interpretability, we suggest implementing a noncon- cave regularization method in the robust estimation procedure to select important covariates from the linear component. We establish the consistency for both the linear and the nonlinear components when the covariate dimension diverges at the rate of o(√n), where n is the sample size. We show that the robust estimate of linear component performs asymptotically as well as its oracle counterpart which assumes the baseline function and the unimportant covariates were known a priori. With a consistent estimator of the linear component, we estimate the nonparametric component by a robust local linear regression. It is proved that the robust estimate of nonlinear component performs asymptotically as well as if the linear component were known in advance. Comprehensive simulation studies are carried out and an application is presented to examine the finite-sample performance of the proposed procedures.
Qin and Lawless (1994) established the statistical inference theory for the empirical likelihood of the general estimating equations. However, in many practical problems, some unknown functional parts h(t) appear in the corresponding estimating equations EFG(X, h(T), β) = 0. In this paper, the empirical likelihood inference of combining information about unknown parameters and distribution function through the semiparametric estimating equations are developed, and the corresponding Wilk's theorem is established. The simulations of several useful models are conducted to compare the finite-sample performance of the proposed method and that of the normal approximation based method. An illustrated real example is also presented.