A new decay detection system with high detection efficiency and low detection threshold has been developed for charged-particle decay studies, including β-delayed proton, α decay or direct proton emission from proton-rich nuclei. The detection system was tested by using the β-delayed proton emitter ^(24)Si and was commissioned in the decay study of ^(22)Si produced by projectile fragmentation at the First Radioactive Ion Beam Line in Lanzhou. Under a continuous-beam mode, the isotopes of interest were implanted into two double-sided silicon strip detectors, where the subsequent decays were measured and correlated to the preceding implantations by using position and time information. The system allows to measure protons with energies down to about 200 ke V without obvious β background in the proton spectrum. Further application of the detection system can be extended to the measurements of β-delayed proton decay and the direct proton emission of other exotic proton-rich nuclei.
The isoscalar and isovector collective multipole excitations in exotic nuclei are studied in the framework of a fully self-consistent relativistic continuum random phase approximation (RCRPA). In this method the contri- bution of the continuum spectrum to nuclear excitations is treated exactly by the single particle Green's function. Different from the cases in stable nuclei, there are strong low-energy excitations in neutron-rich nuclei and proton-rich nuclei. The neutron or proton excess pushes the centroid of the strength function to lower energies and increases the fragmentation of the strength distribution. The effect of treating the contribution of continuum exactly is also discussed.
The quadrant silicon detector, a kind of passivated implanted planar silicon detector with quadrant structure on the junction side, gained its wide application in charged particle detection. In this paper, the manufacturing procedure, performance test and results of the quadrant silicon detector developed recently at the China Institute of Atomic Energy are presented. The detector is about 300 μm thick with a 48 mm×48 mm active area.The leakage current under the full depletion bias voltage of-16 V is about 2.5 n A, and the rise time is better than160 ns. The energy resolution for a 5.157 Me V α-particle is around the level of 1%. Charge sharing effects between the neighboring quads, leading to complicated correlations between two quads, were observed when α particles illuminated on the junction side. It is explained as a result of distortion of the electric field of the inter-quad region.Such an event is only about 0.6% of all events and can be neglected in an actual application.
Detailed investigations on the notch technique are performed on ideal data generated by the optical model potential parameters extracted from the 16O+208spb system at the laboratory energy of 129.5 MeV, to study the sensitivities of this technique to the model parameters as well as the experimental data. It is found that for the perturbation parameters, a sufficiently large reduced fraction and an appropriate small perturbation width are necessary to determine the accurate radial sensitivity; while for the potential parameters, almost no dependence was observed. For the experimental measurements, the number of data points has little influence for heavy target systems, and the relative inner information of the nuclear potential can be derived when the measurement is extended to a lower cross section.