Many environmental factors can cause DNA damage, such as radiation, heat, oxygen free radical, etc., which can induce mutation during DNA replication. Meanwhile, DNA molecules are subjected to various mechanical forces in numerous biological processes. However, it is unknown whether the mechanical force would induce DNA damage and introduce mutation during DNA replication. With the combination of single-molecule manipulation based on atomic force microscopy (AFM), single molecular polymerase chain reaction (SM-PCR) and Sanger's sequencing, we investigated the effect of mechanical force on DNA. The results show that mechanical force can cause DNA damage and induce DNA mutation during amplification.
ZHANG ChenDUAN NaDAI BinZHANG YiZHANG DonghuaHU Jun
The structure and dynamics of water in a thick film on an ionic surface are studied by molecular dynamic simulations. We find that there is a dense monolayer of water molecules in the vicinity of the surface. Water molecules within this layer not only show an upright hydrogen-down orientation, but also an upright hydrogen-up orientation. Thus, water molecules in this layer can form hydrogen bonds with water molecules in the next layer. Therefore, the two-dimensional hydrogen bond network of the first layer is disrupted, mainly due to the 0 atoms in this layer, which are affected by the next layer and are unstable. Moreover, these water molecules exhibit delayed dynamic behavior with relatively long residence time compared with those bulk-like molecules in the other layers. Our study should be halpful to further understand the influence of water film thickness on the interfacial water at the solid-liquid interface.
To investigate the affect of direct current electric field (DCEF) on the interfacial phase,in this paper,a hydrophobic ionic liquid (HIL)/water as liquid-liquid two-phase binary system is established by using the deioned water and l-butyl-3-methyl imidazolium hexafluorophosphate,and the topographies of the HIL nanodroplets and nanolayers in ambient water are observed by atomic force microscope (AFM).The results show the AFM exerting the DCEF can enhance the intersolubility of the HIL/water binary system and induce their interfacial phase transfer.