Based on the analysis of the satellite DCB data estimated by our method and the Center for Orbit Determination in Europe(CODE)from 1999 to 2011,the features of the temporal variation of differential code biases(DCB)are studied.Summarily,there are three types of variations in DCB on different time scales.The first one is the day-to-day variation that exhibits more obviously in solar maximum years.The second one is the variation with about one year periodic variation that behaves more obviously from 1999 to 2004.The last one is the monotonously descending tendency from 1999 to 2010.Considering the basic ionospheric approximation in DCB estimation method,the features of the variability of the ionospheric morphology from 1999to 2010 are also displayed based on the ionospheric characteristic parameters.It can be concluded that the day-to-day and annual variation of the estimated global positioning system(GPS).DCB is related to the ionospheric variability.The variation of DCBs on solar cycle time scale includes the real hardware DCBs and pseudo-DCBs induced by ionospheric variation.No doubt,these kinds of"pseudo"variations of DCB will affect the precision of ionospheric total electron content(TEC)derived from the GPS data.In addition,this study is helpful for evaluating the influence of ionospheric weather on TEC derivation and is also useful for developing one estimation method of DCB with more stability and precision through introducing a more practical ionospheric model.
The classical multidimensional scaling(MDS) method is introduced and applied in the study of the hour-to-hour ionospheric variability based on the ionospheric fo F2 observed at three ionosonde stations in East-Asia in 2002 and 2007. Results from the matrix eigen decompositions indicate that the annual part of the ionospheric variation is large in middle latitude and solar maximum period(2002) while low in the low latitude and solar minimum period(2007). The connectivity maps of the hour-to-hour ionospheric variability based on MDS method show some common diurnal features. The ionospheric connectivity between adjacent hours near noon hours and near midnight hours is high. The ionospheric connectivity between adjacent hours near sunrise hours and near sunset hours is poor, especially for the sunrise hours. Also there are latitudinal and solar activity dependences in this kind of connectivity. These results revealed from the ionospheric connectivity maps are useful physically and in practice for the ionospheric forecasting on the hour-to-hour scale.
In this work,the ionospheric variability is analyzed by applying the wavelet decomposition technique to the noontime fo F2,F10.7,interplanetary magnetic field(IMF)Bz,Ap,and lower thermospheric temperature at pressure of 10?4 h Pa in 2002.Results show that the variance of periodic oscillations in the ionosphere is largest in the 2–4-day period and declines with the increase of the period.The maximum variance of the periodic oscillations in solar irradiation is in the 16–32-day period.For geomagnetic activities,most of the variance is about equally distributed on intervals of periods shorter than 32 days.Variance distributions of IMF Bz and lower thermospheric temperature are similar to those of the ionosphere.They show the maximum in the 2–4-day period and decline with the increase of the period.By analyzing the distributions of the variances,the potential connections between the ionosphere and the external sources are discussed.