The production and transportation of fluorescent light produced in wavelength-shifting fibers (WSFs) coupled to YAP scintillation crystal is simulated using the GEANT4 codes. An advantage of the wavelength-shifting fiber readout technique over a direct readout with a position-sensitive photo-sensor is the reduced requirement for position sensitive photomultiplier tube photocathode area. With this gamma-ray detector, the gamma camera is small and flexible and has larger effective field of view and low cost. Simulation results show that a) a mean 12 of photons per 59.5 keV gamma ray interaction is produced in the WSF located nearest to the incident gamma ray, and a spatial resolution of 3.6 mm FWHM is obtained, b) a mean 27 of photons per 140 keV gamma ray interaction is produced and a spatial resolution of 3.1 mm FWHM is obtained. Results demonstrate the feasibility of this concept of a compact gamma-ray detector based on wavelength-shifting fibers readout. However, since the very low photoelectron levels, it is very important to use a photon counting device with good single photo-electron response to readout the WSFs.
The performance of a compact position sensitive gamma-ray detector based on wavelength-shifting fibers coupled to YAlO3:Ce scintillation crystal was evaluated using a Monte-Carlo simulation method. The simulation model has been setup using the GEANT4 codes. Compared with the gamma-ray detector based on the YAlO3:Ce scintillation crystal coupled to Hamamastu R2486 position sensitive photomultiplier tube, the results indicate that the gamma-ray detector based on wavelength-shifting fibers readout has good position linearity, good spatial resolution and larger effective field of view. The image and point spread function of measured point were presented. The spatial resolution response as a function of position was obtained. The factors influencing spatial resolution and position linearity were discussed.
A new compact gamma camera for small object imaging has been developed.It consists of a pixelized Nal(T1) scintillator array coupled to a position sensitive photomultiplier tube (Hamamatsu R2486) with a parallel-hole lead collimator.The compact camera has better spatial resolution than Anger camera.The average value of intrinsic spatial resolutions is 2.3 mm (FWHM).The overall spatial resolution (FWHM) is 3,5 and 6 mm at 0,2.5 and 3 mm SCD (source-to-collimator distance),respectively.The phantom studies with the compact camera have demonstrated that parallel-hole collimator gamma camera is a practical technique for nuclear medicine application.
Dedicated position sensitive gamma-ray detectors based on position sensitive photomultiplier tubes (PSPMTs) coupled to scintillation crystals, have been used for the construction of compact gamma-ray imaging systems, suitable for nuclear medical imaging applications such as small animal imaging and single organ imaging and scintimammography. In this work, the performance of two gamma-ray detectors: a continuous YAP scintillation crystal coupled to a Harnamastu R2486 PSPMT and a pixellated NaI(TI) scintillation array crystal coupled to the same PSPMT, is compared. The results show that the gamma-ray detector based on a pixellated NaI(TI) scintillation array crystal is a promising candidate for nuclear medical imaging applications, since their performance in terms of position linearity, spatial resolution and effective field of view (FOV) is superior than that of the gamma-ray detector based on a continuous YAP scintillation crystal. However, a better photodetector (Hamamatau H8500 Flat Panel PMT, for example) coupled to the continuous crystal is also likely a good selection for nuclear medicine imaging applications.
By using a pixelized Nal(T1) crystal array coupled to a R2486 PSPMT, the characteristics of the array and of a single pixel, such as the light output, energy resolution, peak-to-valley ratio (P/V) and imaging performance of the detector were studied. The pixel size of the NaI(TI) scintillation pixel array is 2 mm×2 mm×5 mm. There are in total 484 pixels in a 22×22 matrix. In the pixel spectrum an average peak-to-valley ratio (P/V) of 16 was obtained. In the image of all the pixels, good values for the Peak-to- Valley ratios could be achieved, namely a mean of 17, a maximum of 45 and the average peak FWHM (the average value of intrinsic spatial resolution) of 2.3 mm. However, the PSPMT non-uniform response and the scintillation pixels array inhomogeneities degrade the imaging performance of the detector.
A compact gamma-ray detector with good spatial resolution for emission computed tomography (E-CT) applications has been developed. The detector is composed of NaI(Tl) scintillation pixels array and Hamamastu R2486-05 PSPMT. Having a pixel size of 2 mm × 2 mm and an overall dimension of 48.2 mm × 48.2mm × 5 mm, it has 484 pixels in a 22×22 matrix. An average spatial resolution of 2.5mm (FWHM) was achieved. The slope of position linearity is constant within 10% in a range of 40mm. After corrections, the average value of differential non-linearity and absolute non-linearity were 0.16mm and 0.535mm respectively, and a 17% at FWHM of total energy resolution for 241Am was obtained.