To explore eutrophication and algal bloom mechanisms in channel type reservoirs, a novel enclosure experiment was conducted by changing light intensity (LI) in the Daning River of the Three Gorges Reservoir (TGR). Square enclosures (side 5.0 m) were covered on the surface with shading materials of different thickness, and with their bases open to the river. Changes and characteristics of the main eutrophication factors under the same water quality and hydrodynamic conditions but different LI were evaluated. All experimental water samples were neutral and alkalescent, with high nitrogen and phosphate concentrations, low potassium permanganate index, stable water quality, and different LI. At the same water depth, LI decreased with increasing shade material, while dissolved oxygen and water temperature were both stable. The growth peak of phytoplankton was with light of 345-4390 lux underwater or 558-7450 lux above the water surface, and water temperature of 25.6--26.5℃. Algae were observed in all water samples, accounting for 6 phylum and 57 species, with algal density changing frequently. The results showed that significantly strong or weak light was unfavorable for phytoplankton growth and the function together with suitable temperature and LI and ample sunshine encouraged algal blooms under the same water quality and hydrodynamic conditions. Correlation analysis indicated that algae reduced gradually lengthwise along water depth in the same enclosure while pH became high. The power exponent relationship between chlorophyll a (Chl-a) and LI was found by curve fitting, that is Chl-a = K(LI)n.