To cope with multi-object tracking under real-world complex situations, a new video-based method is proposed. In the detecting step, the moving objects are segmented with the third level DWT (discrete wavelet transform )and background difference. In the tracking step, the Kalman filter and scale parameter are used first to estimate the object position and bounding box. Then, the center-association-based projection ratio and region-association-based occlusion ratio are defined and combined to judge object behaviours. Finally, the tracking scheme and Kalman parameters are adaptively adjusted according to object behaviour. Under occlusion, partial observability is utilized to obtain the object measurements and optimum box dimensions. This method is robust in tracking mobile objects under such situations as occlusion, new appearing and stablization, etc. Experimental results show that the proposed method is efficient.
This paper addresses the adaptive tracking control scheme for switched nonlinear systems with unknown control gain sign. The approach relaxes the hypothesis that the upper bound of function control gain is known constant and the bounds of external disturbance and approximation errors of neural'networks are known. RBF neural networks (NNs) are used to approximate unknown functions and an H-infinity controller is introduced to enhance robustness. The adaptive updating laws and the admissible switching signals have been derived from switched multiple Lyapunov function method. It's proved that the resulting closed loop system is asymptotically Lyapunov stable such that the output tracking error performance and H-infinity disturbance attenuation level are well obtained. Finally, a simulation example of Forced Duffing systems is given to illustrate the effectiveness of the proposed control scheme and improve significantly the transient performance.