Extensive lacustrine deposits in the eastern Tarim Basin provide records of climate change influenced by the westerly winds and the Asian monsoon. To characterize the evolution of climate change in this region, we analyze elemental concentrations of barium(Ba) from the Ls2 drill core of Lop Nor, a paleo-lakebed located in the eastern Tarim Basin. Biogenic Ba concentrations from this drill core display a large-amplitude oscillation that generally follows a pattern similar to that of Artemisia content and ostracod assemblages, suggesting that is may serve as an index for climate change experienced in the basin. Our results indicate that biogenic Ba is especially sensitive to precipitation. All climatic proxies served in this study vary significantly over late Miocene to early Pleistocene time period. Strong aridification of eastern Tarim in the late Miocene to the early Pliocene may be attributed to a latitudinal shift in the westerly winds, which would have resulted in more moisture transported to southern and eastern Tibet. The growth of the Himalaya and Tibetan Plateau may have acted as an orographic barrier that blocked moisture sourced in the south from the northern margins of the plateau. We link weaker aridification in the late Pliocene to an increased intensity of the Indian Monsoon.
Hong ChangZhisheng AnWeiguo LiuFeng WuXiaoke QiangYougui Song
The expansion of inland Asia deserts has considerably influenced the environmental, social and economic activities in Asia. Aridification of inland Asia, especially timing of the initiation of Asian desertification, is a contentious topic in paleoclimatology. Late Cenozoic eolian loess-red clay sequences on the Chinese Loess Plateau, which possess abundant paleoclimatic and paleo-environmental information, can be regarded as an indicator of inland Asia desertification. Here we present a detailed magnetostratigraphic investigation of a new red clay sequence about 654 m in Zhuanglang located at the western Chinese Loess Plateau. Sedimentological, geochemical, mineralogical, and quartz morphological lines of evidence show that the red clay is of eolian origin. Magnetostratigraphic correlations indicate that this core sequence spans from 25.6 to 4.8 Ma, and typical eolian red clay appears as early as 25 Ma. This extends the lower limit of the red clay on the Chinese Loess Plateau from the previously thought early Miocene back into the late Oligocene. This new red clay record further implies that the inland Asia desertification was initiated at least by the late Oligocene. This sequence provides a unique high-resolution geological record for understanding the inland Asia desertification process since the late Oligocene.
Tectonic uplift of the Tibetan Plateau(TP) is a major event in the recent geological history of the earth,which produced far-reaching impacts on the Asian and global climates and environments.Since the 1970 s,with the development of theories in planetary fluid dynamics and the improvement of computational environment,numerical simulation based on general circulation models(GCMs) has become an increasingly effective tool in investigations of the physical mechanisms and evolutionary processes of paleoclimate associated with the TP uplift.In this paper,we provide a timely review on representative works in the past four decades on the paleoclimatic responses to the plateau uplift.Numerical simulations to study the paleoclimatic effects of the plateau uplift experienced three stages with increasing complexity:1) plateau uplift as a whole in a single episode,as represented by the no-mountain/with-mountain experiments;2) phased uplift in which the uplifting process was divided into multiple stages and within each the plateau rose by a certain proportion of its current height;and3) sub-regional uplift,in which the focus was the effects of the uplift of a certain area within the TP,such as the northern Tibetan Plateau.These studies discovered the cause-effect relations between the plateau uplift and paleoclimate change,especially for the effects on the evolution of Asian monsoon system and aridification of inland Asia.In this review,we also included examples of current on-going studies,such as the relative impacts of the Himalayas vs.those of the TP as the rain barrier and comparative studies on the paleoclimatic effects of the uplifts of the TP and African highland.Toward the end,we identified five areas as the focus of future research regarding the TP uplift:1) the differences in the evolutionary processes of the South Asian and East Asian monsoons in response to the Himalayas-TP uplift at the regional and sub-regional scales;2) climatic feedbacks;3) long-distance effects(teleconnections) of the TP uplift;4) abrupt clim