1 Introduction Four species of reactive thermotropic liquid crystalline polymer (LCMC) with different relative molecular weight were synthesized in this work (see scheme 1, n=2, 6, 10, ∞.n means number of repeat structure unit). Their structure, morphology and properties were investigated systemically by differential scanning calorimetry (DSC), Thermogravimetric analysis (TGA), Fourier transform infrared spectroscopy (FTIR), Wide-angle X-ray diffraction (WAXD), polarizing opticalmicroscopy (POM) and ubb...
Chun Wei, Chi-hua Lu, Deng Xu, Yong-yang Gong, Wei-zhong LU, Ming Zeng (Key Laboratory of New Processing Technology for Nonferrous Metals and Materials, Ministry of Education, Guilin University of Technology, Guilin 541004, China)
One kind of novel reactive thermotropic liquid crystalline polymer-methacryloyl copolymer (LCMC) containing polyester mesogenic units was synthesized. Its structure, morphology and properties were investigated systemically by Ubbelohde viscometer, differential scanning calorimetry (DSC), Fourier transform infrared spectroscopy (FTIR), wide-angle X-ray diffractometry (WAXD) and polarizing optical microscopy (POM). The results indicate that it is one kind of nematic thermotropic liquid crystal polymer (TLCP). The impact strength, bending strength and the morphologies of impact fracture surface of LCMC, unsaturated polyester (UP) and glass fiber (GF) in-situ hybrid composites were studied by Izod impact tester, universal testing machine and scanning electron microscopy (SEM), respectively. The results show that the impact and bending strength of composites containing LCMC are improved, especially the composites containing 5% LCMC increases most obviously. These results with SEM results reveal that LCMC plays an important role in the improvement of interfacial adhesive between matrix and fiber.