The west Junggar,located in the eastern part of Balkash-Junggar tectonic province,is a major component of the core of the Central Asian metallogenic region.This area is characterized by occurrences of ophiolitic mélanges,such as the Sartohay ophiolitic mélange in the NE and the Tangbale ophiolitic mélange in the west.As a hydrothermal alteration product of serpentinite in the Sartohay ophiolitic mélange,listwaenite lenses are gold-mineralized and crop out on surface in the ophiolitic mélange via weathering of exhumated hanging wall of fault zone.Listwaenite is mainly composed of magnesite,quartz,dolomite,and trace amounts of mariposite,chromian spinel,talc and sulfide.A vertical thermal gradient model for the hydrothermal alteration shows that serpentinite would first be transformed to talc schist,then into listwaenite as the ophiolite slices continued to rise along shear zone,with XCO2,oxygen and sulfur fugacity increase and temperature decrease.Both serpentine and magnetite were progressively destroyed during the transformation from serpentinite to talc schist,andcompletely vanished in listwaenite,while mariposite generated in weakly deformed to mylonitized listwaenite.Concentrations of most trace elements including high field strength elements and metallogenic elements,increasing from undeformed,through weakly deformed,to mylonitized listwaenite,show a positive correlation with deformation degree and content of apatite,rutile,monazite,zircon and sulfide in listwaenite.The shear zone served as pathways for percolation and accumulation of fluid and trace elements during the metasomatism from serpentinite to listwaenite.Compared to undeformed listwaenite,mylonitized listwaenite will be more favorable to be fractured and brecciated due to more intense shearing,which caused strong metasomatic reaction and then induced trace element-bearing mylonitized listwaenite.
The Cihai iron-cobalt deposit is located in the southern part of the eastern Tianshan iron- polymetallic metallogenic belt. Anomalous native gold and bismuth have been newly identified in Cinan mining section of the Cihai deposit. Ore formation in the deposit can be divided into three stages based on geological and petrographical observations: (I) skarn, with the main mineral assemblage being garnet-pyroxene-magnetite; (II) retrograde alteration, forming the main iron ores and including massive magnetite, native gold, native bismuth, and cobalt-bearing minerals, with the main mineral assemblage being ilvaite-magnetite-native gold-native bismuth; and (III) quartz-calcite- sulfide assemblage that contains quartz, calcite, pyrrhotite, cobaltite, and safflorite. Native gold mainly coexists with native bismuth, and they are paragenetically related. The temperature of initial skarn formation was higher than 340~C, and then subsequently decreased to -312~C and ~266~C. The temperature of the hydrothermal fluid during the iron ore depositional event was higher than the melting point of native bismuth (271~C), and native bismuth melt scavenged gold in the hydrothermal fluid, forming a Bi-Au melt. As the temperature decreased, the Bi-Au melt was decomposed into native gold and native bismuth. The native gold and native bismuth identified during this study can provide a scientific basis for prospecting and exploration for both gold- and bismuth-bearing deposits in the Cihai mining area. The gold mineralization in Cihai is a part of the Early Permian Cu-Ni-Au-Fe polymetallic ore-forming event, and its discovery has implications for the resource potential of other iron skarn deposits in the eastern Tianshan.