Froth flotation is a commonly employed technology to improve the quality of raw coal and minerals.Coal and minerals particle size and surface hydrophobicity are two main parameters that affect three key steps in froth flotation process:particle-bubble collision,adhesion,and detachment.This paper fundamentally investigated the effects of nanobubble on coal and phosphate flotation.It has been found that the presence of nanobubble in flotation pulp could widen the coal and phosphate flotation particle size range,increase the particle surface hydrophobicity,and thus improve the coal and phosphate froth flotation recovery.
A special nanobubble generation system has been developed for evaluating the effect of nanobubble on froth flotation. In this study, an eight-factor five-level Central Composite Experimental Design was conducted for investigating eight important parameters governing the median size and the volume of nanobubbles. These process parameters included surfactant concentration, dissolved oxygen (O2) content, dissolved carbon dioxide gas (CO2) content, pressure drop in cavitation tube nozzle, <50 nm hydrophobic particle concentration, <50 nm hydrophilic particle concentration, slurry temperature and the time interval after nanobubble generation. The properties, stability and uniformity of nanobubbles were investigated. The study of the produced nanobubble’s effects on the characteristics of microbubble solutions and millimeter scale bubble solutions was performed in a 50.8 mm column.
Because of the low grade, high oxidation rate and the accumulation of little associated metal sulfide ore in the molybdenum concentrate during flotation, the Qingyang molybdenum ore is difficult to beneficiate. The experimental studies of grinding fineness, the amount of roughing modifier, depressant and collector were completed. In the cleaning process, the contrast experiments of one regrinding, the regrinding and scrubbing, two-stage regrinding was carried. The result shows that the grade of molybdenum ore concentrate is 45.31%, the recovery is 65.98% and the rich ore ratio reaches 20.59% by the regrinding and scrubbing seven cleaning, the regrinding of concentrations from middling of molybdenum-sulfur separation. The regularly-concentrated material from the apparatus was as the middling products. Hence, ideal beneficiation index can be obtained with a rational mineral processing, which offers new beneficiating technology for the refractory low-grade molybdenum ore in China.
The highly-efficient dry separation technique using a gas-solid fluidized bed is very beneficial for increasing coal grade and optimizing the utilization of coal resources.The size distribution of the solid medium(e.g.,magnetite powder) used in this technique is one of key factors that influences fluidization and separation performance.It is,therefore,urgent to prepare medium in a way that operates at low cost and high efficiency.Grinding experiments were performed using a planetary ball mill equipped with a frequency converter.The effect of fed mass,rotation frequency of the mill,grinding time and the ball-size ratio on grinding performance was investigated.The grinding parameters were optimized by numerical calculations using Artificial Neural Network(ANN) in Matlab.A regression equation for predicting the yield of the desired product(i.e.,0.3~0.15 mm magnetite powder) is proposed.The maximum yield of 0.3~0.15 mm particles was 47.24%.This lays a foundation for the industrial-scale production of the solid medium required for separation with a magnetite-powder fluidized bed.
LUO ZhenfuZUO WeiTANG LigangZHAO YueminFAN Maoming