Gracilaria lemaneiformis Bory is an economically important alga that is primarily used for agar production.Although tetraspores are ideal seeds for the cultivation of G.lemaneiformis,the most popular culture method is currently based on vegetative fragments,which is labor-intensive and time-consuming.In this study,we optimized the conditions for tetraspore release and evaluated the photosynthetic activities of different colonies formed from the branches of G.lemaneiformis using a PAM(pulse-amplitude-modulated) measuring system.The results showed that variations in temperature and salinityhad significant effects on tetraspore yield.However,variations in the photon flux density(from 15 μmol m-2 s-1 to 480 μmol m-2 s-1) had no apparent effect on tetraspore yield.Moreover,the PAM-parameters Y(I),Y(Ⅱ),ETR(I),ETR(Ⅱ) and Fv/Fm of colonies formed from different branches showed the same trend:parameter values of first generation branches>second generation branches>third generation branches.These results suggest that the photosynthetic activities of different colonies of branches changed with the same trend.Furthermore,photosynthesis in G.lemaneiformis was found to be involved in vegetative reproduction and tetraspore formation.Finally,the first generation branches grew slowly,but accumulated organic compounds to form large numbers of tetraspores.Taken together,these results showed that the first generation branches are ideal materials for the release of tetraspores.
Bryopsis kypnoides Lamouroux is a unique intertidal siphonous green alga whose extruded protoplasm can aggregate spontaneously in seawater to form numerous new cells that can develop into mature algal thalli. In this study, the photosynthetic responses during dehydration of both the thalli and protoplasts isolated from B. kypnoides were measured using a Dual-PAM (pulse amplitude modulation)-100 fluorometer. The results show that the photosynthetic rates of B. kypnoides thalli were maintained for an initial period, beyond which continued desiccation resulted in reduced rates of PSI and PSII. However, the photosynthetic performances of the isolated protoplasts dehydrated in air (CO2 concentration 600-700 mg/L) showed a slight increase of Y(II) at 20% water loss, but the rates decreased thereafter with declining water content. When protoplasts were dehydrated in CO2 deficient conditions (CO2 concentration 40-80 mg/L), the values of Y(II) declined steadily with increased dehydration without an initial rise. These results indicated that the thalli and isolated protoplasts of this alga can utilize CO2 in ambient air effectively, and the photosynthetic performances of the isolated protoplasts were significantly different from that of the thalli during dehydration. Thus the protoplasts may be an excellent system for the study of stress tolerance.
To screen the stable expression genes related to the stress (strong light, dehydration and temperature shock) we applied Absolute real-time PCR technology to determine the transcription numbers of the selected test genes in Porphyra yezoensis, which has been regarded as a potential model species responding the stress conditions in the intertidal. Absolute real-time PCR technology was applied to determine the transcription numbers of the selected test genes in Porphyra yezoensis, which has been regarded as a potential model species in stress responding. According to the results of photosynthesis parameters, we observed that Y(II) and Fv/Fm were significantly affected when stress was imposed on the thalli of Porphyra yezoensis, but underwent almost completely recovered under normal conditions, which were collected for the following experiments. Then three samples, which were treated with different grade stresses combined with salinity, irradiation and temperature, were collected. The transcription numbers of seven constitutive expression genes in above samples were determined after RNA extraction and cDNA synthesis. Finally, a general insight into the selection of internal control genes during stress response was obtained. We found that there were no obvious effects in terms of salinity stress (at salinity 90) on transcription of most genes used in the study. The 18S ribosomal RNA gene had the highest expression level, varying remarkably among different tested groups. RPS8 expression showed a high irregular variance between samples. GAPDH presented comparatively stable expression and could thus be selected as the internal control. EF-la showed stable expression during the series of multiple-stress tests. Our research provided available references for the selection of internal control genes for transcripts determination of P. yezoensis.
In 2008, a green tide broke out before the sailing competition of the 29th Olympic Games in Qingdao. The causative species was determined to be Enteromorpha prolifera (Ulva prolifera O. F. Miiller), a familiar green macroalga along the coastline of China. Rapid accumulation of a large biomass of floating U. prolifera prompted research on different aspects of this species. In this study, we constructed a nonnormalized cDNA library from the thalli of U. prolifera and acquired 10072 high-quality expressed sequence tags (ESTs). These ESTs were assembled into 3 519 nonredundant gene groups, including 1 446 clusters and 2 073 singletons. After annotation with the nr database, a large number of genes were found to be related with chloroplast and ribosomal protein, GO functional classification showed 1 418 ESTs participated in photosynthesis and 1 359 ESTs were responsible for the generation of precursor metabolites and energy. In addition, rather comprehensive carbon fixation pathways were found in U. prolifera using KEGG. Some stress-related and signal transduction-related genes were also found in this study. All the evidences displayed that U. prolifera had substance and energy foundation for the intense photosynthesis and the rapid proliferation. Phylogenetic analysis of cytochrome c oxidase subunit I revealed that this green-tide causative species is most closely affiliated to Pseudendoclonium akinetum (Ulvophyceae).
The photosynthetic oxygen evolution of Caulerpa serrulata was determined with oxygen electrodes. The effects of light and temperature on the growth and regeneration of fragmented C. serrulata thalli were analyzed. The regenerating rate and establishment of different sizes and portions of C. serrulata were studied. The results showed that the light saturation point of C. serrulata was 200 μmol photons/m^2 per s and the optimum growth temperature was 25-30 ℃. Under these conditions, the maximum photosynthetic oxygen evolution rate was 15.1 ± 0.29 mg O2/mg Chl alh, the growth rate and elongation rate reached the highest values, 4.67 ±0.09 mg FW/d and 0.78± 0.01 mm/d, respectively. The fragmented C. serrulata thalli was regenerated at 20-35℃ and survived at 15℃ and 200 μmol photons/m^2 per s. A different survival rate was detected according to fragment size. All of these results indicated that C. serrulata was a candidate to become an invasive species if introduced into a new place. Therefore, we should pay more attention to C. serrulata for its potential threat to marine ecosystem when it is sold for aquarium use.
In mid-May 2008 a serious green tide caused mainly by floating Ulva prolifera (Mvller) J. Agardh (Chlorophyta, Ulvales) thalli struck the coastal area of Qingdao, China. To understand the present physiological conditions of the floating alga, in this work both laboratory and field investigations were conducted on the floating U. prolifera thalli in comparison with the attached U. prolifera thalli collected from the area. The floating thalli of three distinctively different colors and attached thalli at three different stages of sporangium formation process were characterized under a microscope, while their photosynthetic parameters were determined with chlorophyll fluorescence technology. On the other hand, the sporangium formation status of the floating U. prolifera thalli was surveyed both in the laboratory and in the field. Comparisons showed that both of the paired morphological characteristics and the paired physiological parameters of the floating and attached U. prolifera thalli were consistent. Furthermore, some spores were confirmed in the field and some motile particles were found within the floating thalli. These results suggest that the floating U. prolifera thalli with different colors could be at different stages of sporangium formation. However, our results also showed that the floating alga thalli have only a limited reproductive potential. This might limit the duration and the further geographic expansion of the green algal bloom.
Apeng LinSongdong ShenGuangce WangQianqian YiHongjin QiaoJianfeng NiuGuanghua Pan
In this work, the photosynthetic performances of Enteromorpha prolifera thalli collected from the sur- face and bottom of the sea of Qingdao sea area were studied with chlorophyll fluorescence and oxy- graph technology. The samples with the highest photosynthetic activity among their kinds, the floating thalli from the sea surface of the south of the Qingdao Olympic Sailing Center and the sedimentary thalli from the mud surface of the bottom Tuandao bay, were chosen as representatives of surface thalli and bottom thalli, respectively. The results showed that the maximal PSII quantum yield of the floating thalli was significantly lower than the normal level although their photosynthetic activities were relatively high; the photosynthetic potential of the thalli form the mud surface was extremely low. Thus, it is indicated that the floating thalli are seriously stressed by their environment and the thalli from the mud surface are already dead or are dying. On the other hand, the results of the laboratory cultivation showed that the sedimentary thalli cannot regain normal photosynthetic activity even under normal illumination condi- tions. Thus, the thalli from the mud surface cannot become reproductive source of the alga even if they can reach sea surface again. Therefore, a preliminary conclusion can be reached that, up to mid-July 2008, the environmental conditions of the Qingdao sea area are not suitable for the growth of the alga E. prolifera and for this reason the biomass of E. prolifera, in the area, could be declining.
LIN APengWANG ChaoQIAO HongJinPAN GuangHuaWANG GuangCeSONG LiYunWANG ZhiYuanSUN SongZHOU BaiCheng