The spatial distribution pattern of organisms is a basic issue in understanding the mechanisms of community assembly. Although the spatial distributions of animals and plants have been well studied,those of microorganisms are still being debated. In this study, we used a fi sh gut microecosystem to detect the spatial pattern of microbes, because it can provide a relatively unifi ed and stable environment. Results suggest that the turnover of intestinal bacterial assemblages showed a weak but highly signifi cant negative correlation between similarity and distances in the microbial community, in respect of both grass carp intestinal loci distances and the geographical distance between fi sh sampling sites. Our results also suggest that intestinal bacterial assemblages responded to differences within the external environment and within different parts of the fi sh themselves. These results show that some, or possibly all, microbes are restricted in their distribution and that environmental factors are also important infl uences on the structure of intestinal bacterial assemblages. The fi sh gut microecosystem is useful in promoting study of the spatial distribution patterns of microorganisms.
Bacterioplankton play key roles in the biogeochemical cycle and in organic contaminant degradation. The species richness and abundance of bacterial subgroups are generally distinct from each other, and this is attributed to their different functions in aquatic ecosystems. The spatiotemporal variations of eight phylogenetic subgroups (Actinobacteria, Bacteroidetes, Cyanobacteria, Firmicutes, Planctomycetes, alpha-, beta-, and gamma-Proteobacteria) derived from Donghu Lake were investigated using PCR-DGGE fingerprinting, to explore their responses to environmental factors. Results indicate that Actinobacteria and beta-Proteobacteria were the two largest bacterial subgroups detected. These two groups and Bacteroidetes showed clear seasonal patterns in composition of the operational taxonomic unit. Results also suggest that the bacterioplankton subgroups in Donghu Lake were significantly correlated with different environmental factors. In brief, the total nitrogen was one of the major factors regulating all the bacterioplankton except for Actinobacteria. However, total phosphorus, another important eutrophication factor, contributed to the two largest bacterial groups (Actinobacteria and beta-Proteobacteria), as well as to the Cyanobacteria and Firmicutes. Therefore, the responses of bacterioplankton subgroups to environmental factors were different, and this should be attributed to the differences in the fimctions of different groups.